14,194 research outputs found

    Vertical Load Tests of Footings on Silt

    Get PDF
    Vertical load tests were performed on two shallow spread footings founded on nonplastic silt. Maximum vertical loads of 500 kips were applied to the test footings which were about 24 x 12 x 4 ft in size. Instrumentation was installed to measure footing displacements, footing contact stresses, and soil displacements below the footings. Results of the load tests have been presented in graphic form. Comparisons have been made between measured settlements of the footings and predicted settlements based on standard penetration test results in the silt deposit

    Ultrafast Molecular Imaging by Laser Induced Electron Diffraction

    Get PDF
    We address the feasibility of imaging geometric and orbital structure of a polyatomic molecule on an attosecond time-scale using the laser induced electron diffraction (LIED) technique. We present numerical results for the highest molecular orbitals of the CO2 molecule excited by a near infrared few-cycle laser pulse. The molecular geometry (bond-lengths) is determined within 3% of accuracy from a diffraction pattern which also reflects the nodal properties of the initial molecular orbital. Robustness of the structure determination is discussed with respect to vibrational and rotational motions with a complete interpretation of the laser-induced mechanisms

    Reciprocal space mapping of magnetic order in thick epitaxial MnSi films

    Full text link
    We report grazing incidence small angle neutron scattering (GISANS) and complementary off-specular neutron reflectometry (OSR) of the magnetic order in a single-crystalline epitaxial MnSi film on Si(111) in the thick film limit. Providing a means of direct reciprocal space mapping, GISANS and OSR reveal a magnetic modulation perpendicular to the films under magnetic fields parallel and perpendicular to the film, where additional polarized neutron reflectometry (PNR) and magnetization measurements are in excellent agreement with the literature. Regardless of field orientation, our data does not suggest the presence of more complex spin textures, notably the formation of skyrmions. This observation establishes a distinct difference with bulk samples of MnSi of similar thickness under perpendicular field, in which a skyrmion lattice dominates the phase diagram. Extended x-ray absorption fine structure measurements suggest that small shifts of the Si positions within the unstrained unit cell control the magnetic state, representing the main difference between the films and thin bulk samples

    All-Optical Production of Chromium Bose-Einstein Condensates

    Full text link
    We report on the production of ^52Cr Bose Einstein Condensates (BEC) with an all-optical method. We first load 5.10^6 metastable chromium atoms in a 1D far-off-resonance optical trap (FORT) from a Magneto Optical Trap (MOT), by combining the use of Radio Frequency (RF) frequency sweeps and depumping towards the ^5S_2 state. The atoms are then pumped to the absolute ground state, and transferred into a crossed FORT in which they are evaporated. The fast loading of the 1D FORT (35 ms 1/e time), and the use of relatively fast evaporative ramps allow us to obtain in 20 s about 15000 atoms in an almost pure condensate.Comment: 4 pages, 4 figure

    Continuity of the four-point function of massive Ď•44\phi_4^4-theory above threshold

    Full text link
    In this paper we prove that the four-point function of massive \vp_4^4-theory is continuous as a function of its independent external momenta when posing the renormalization condition for the (physical) mass on-shell. The proof is based on integral representations derived inductively from the perturbative flow equations of the renormalization group. It closes a longstanding loophole in rigorous renormalization theory in so far as it shows the feasibility of a physical definition of the renormalized coupling.Comment: 23 pages; to appear in Rev. Math. Physics few corrections, two explanatory paragraphs adde

    Laser induced electron diffraction: a tool for molecular orbital imaging

    Full text link
    We explore the laser-induced ionization dynamics of N2 and CO2 molecules subjected to a few-cycle, linearly polarized, 800\,nm laser pulse using effective two-dimensional single active electron time-dependent quantum simulations. We show that the electron recollision process taking place after an initial tunnel ionization stage results in quantum interference patterns in the energy resolved photo-electron signals. If the molecule is initially aligned perpendicular to the field polarization, the position and relative heights of the associated fringes can be related to the molecular geometrical and orbital structure, using a simple inversion algorithm which takes into account the symmetry of the initial molecular orbital from which the ionized electron is produced. We show that it is possible to extract inter-atomic distances in the molecule from an averaged photon-electron signal with an accuracy of a few percents

    Time-dependent unitary perturbation theory for intense laser driven molecular orientation

    Full text link
    We apply a time-dependent perturbation theory based on unitary transformations combined with averaging techniques, on molecular orientation dynamics by ultrashort pulses. We test the validity and the accuracy of this approach on LiCl described within a rigid-rotor model and find that it is more accurate than other approximations. Furthermore, it is shown that a noticeable orientation can be achieved for experimentally standard short laser pulses of zero time average. In this case, we determine the dynamically relevant parameters by using the perturbative propagator, that is derived from this scheme, and we investigate the temperature effects on the molecular orientation dynamics.Comment: 16 pages, 6 figure
    • …
    corecore