2,947 research outputs found

    The Corporate Income Tax System: Overview and Options for Reform

    Get PDF
    The corporate income tax system has been a focus of many recent debates about tax reform and the economy. Many economists and policy makers argue that reform of the corporate income tax system is needed, although a variety of rationales on why and how have been offered. Some argue that a simpler system with lower tax rates is necessary to encourage domestic investment, employment, and economic growth. Others argue that reform is needed to close loopholes and restrict access to tax havens, both of which are seen by some to allow corporations to avoid taxes too easily. A number of others have advocated for corporate tax reform on the basis that the current system puts American corporations at a disadvantage when compared with foreign competitors. Many believe it is a combination of these arguments that justify reforming the corporate tax system. This report presents information and research on the corporate tax to help policy makers understand and evaluate arguments presented in the tax reform debate. Many of the topics and ideas discussed here are analyzed in greater detail in the other CRS reports and academic research referenced throughout. This report first reviews the structure of the corporate income tax. Data on which companies pay the corporate tax, corporate tax revenue, and how the U.S. system compares to the rest of the world are then presented and analyzed. Next, the economic effects of the corporate tax are reviewed—including a discussion of the purpose of the corporate tax, who bears the burden of the tax, and how to evaluate alternative corporate tax systems. The report then reviews broad reform options and concludes with a comparison of specific proposals that have been offered

    A general equilibrium theory of college with education subsidies, in-school labor supply, and borrowing constraints

    Get PDF
    This paper analyzes the effectiveness of three different types of education policies: tuition subsidies (broad based, merit based, and flat tuition), grant subsidies (broad based and merit based), and loan limit restrictions. We develop a quantitative theory of college within the context of general equilibrium overlapping generations economy. College is modeled as a multi-period risky investment with endogenous enrollment, time-to-degree, and dropout behavior. Tuition costs can be financed using federal grants, student loans, and working while at college. We show that our model accounts for the main statistics regarding education (enrollment rate, dropout rate, and time to degree) while matching the observed aggregate wage premiums. Our model predicts that broad based tuition subsidies and grants increase college enrollment. However, due to the correlation between ability and financial resources most of these new students are from the lower end of the ability distribution and eventually dropout or take longer than average to complete college. Merit based education policies counteract this adverse selection problem but at the cost of a muted enrollment response. Our last policy experiment highlights an important interaction between the labor-supply margin and borrowing. A significant decrease in enrollment is found to occur only when borrowing constraints are severely tightened and the option to work while in school is removed. This result suggests that previous models that have ignored the student's labor supply when analyzing borrowing constraints may be insufficient.Education - Economic aspects ; College costs

    Genomic Selective Constraints in Murid Noncoding DNA

    Get PDF
    Recent work has suggested that there are many more selectively constrained, functional noncoding than coding sites in mammalian genomes. However, little is known about how selective constraint varies amongst different classes of noncoding DNA. We estimated the magnitude of selective constraint on a large dataset of mouse-rat gene orthologs and their surrounding noncoding DNA. Our analysis indicates that there are more than three times as many selectively constrained, nonrepetitive sites within noncoding DNA as in coding DNA in murids. The majority of these constrained noncoding sites appear to be located within intergenic regions, at distances greater than 5 kilobases from known genes. Our study also shows that in murids, intron length and mean intronic selective constraint are negatively correlated with intron ordinal number. Our results therefore suggest that functional intronic sites tend to accumulate toward the 5' end of murid genes. Our analysis also reveals that mean number of selectively constrained noncoding sites varies substantially with the function of the adjacent gene. We find that, among others, developmental and neuronal genes are associated with the greatest numbers of putatively functional noncoding sites compared with genes involved in electron transport and a variety of metabolic processes. Combining our estimates of the total number of constrained coding and noncoding bases we calculate that over twice as many deleterious mutations have occurred in intergenic regions as in known genic sequence and that the total genomic deleterious point mutation rate is 0.91 per diploid genome, per generation. This estimated rate is over twice as large as a previous estimate in murids

    Spontaneous mutation accumulation in multiple strains of the green alga, Chlamydomonas reinhardtii

    Get PDF
    Estimates of mutational parameters, such as the average fitness effect of a new mutation and the rate at which new genetic variation for fitness is created by mutation, are important for the understanding of many biological processes. However, the causes of interspecific variation in mutational parameters and the extent to which they vary within species remain largely unknown. We maintained multiple strains of the unicellular eukaryote Chlamydomonas reinhardtii, for approximately 1000 generations under relaxed selection by transferring a single cell every ∼10 generations. Mean fitness of the lines tended to decline with generations of mutation accumulation whereas mutational variance increased. We did not find any evidence for differences among strains in any of the mutational parameters estimated. The overall change in mean fitness per cell division and rate of input of mutational variance per cell division were more similar to values observed in multicellular organisms than to those in other single-celled microbes. However, after taking into account differences in genome size among species, estimates from multicellular organisms and microbes, including our new estimates from C. reinhardtii, become substantially more similar. Thus, we suggest that variation in genome size is an important determinant of interspecific variation in mutational parameters

    Evidence of widespread degradation of gene control regions in hominid genomes

    Get PDF
    Although sequences containing regulatory elements located close to protein-coding genes are often only weakly conserved during evolution, comparisons of rodent genomes have implied that these sequences are subject to some selective constraints. Evolutionary conservation is particularly apparent upstream of coding sequences and in first introns, regions that are enriched for regulatory elements. By comparing the human and chimpanzee genomes, we show here that there is almost no evidence for conservation in these regions in hominids. Furthermore, we show that gene expression is diverging more rapidly in hominids than in murids per unit of neutral sequence divergence. By combining data on polymorphism levels in human noncoding DNA and the corresponding human¿chimpanzee divergence, we show that the proportion of adaptive substitutions in these regions in hominids is very low. It therefore seems likely that the lack of conservation and increased rate of gene expression divergence are caused by a reduction in the effectiveness of natural selection against deleterious mutations because of the low effective population sizes of hominids. This has resulted in the accumulation of a large number of deleterious mutations in sequences containing gene control elements and hence a widespread degradation of the genome during the evolution of humans and chimpanzees
    corecore