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Abstract 

 

Estimates of mutational parameters, such as the average fitness effect of a new mutation and 

the rate at which new genetic variation for fitness is created by mutation, are important for 

the understanding of many biological processes. However, the causes of interspecific 

variation in mutational parameters and the extent to which they vary within species remain 

largely unknown. We maintained multiple strains of the unicellular eukaryote 

Chlamydomonas reinhardtii, for approximately 1000 generations under relaxed selection by 

transferring a single cell every ~10 generations. Mean fitness of the lines tended to decline 

with generations of mutation accumulation whilst mutational variance increased. We did not 

find any evidence for differences amongst strains in any of the mutational parameters 

estimated. The overall change in mean fitness per cell division and rate of input of mutational 

variance per cell division were more similar to values observed in multicellular organisms 

than to those in other single celled microbes. However, after taking into account differences 

in genome size amongst species, estimates from multicellular organisms and microbes, 

including our new estimates from C. reinhardtii, become substantially more similar. Thus, we 

suggest that variation in genome size is an important determinant of interspecific variation in 

mutational parameters.  
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Introduction 
 

 Spontaneous mutation is ultimately the source of all genetic variation. Consequently, 

mutation is central to many aspects of biology, including the genetic basis of heritable 

disease, biodiversity conservation, agricultural breeding, population genetics, and evolution. 

A comprehensive description of the process of mutation and the effects of mutant alleles on 

the phenotype is therefore fundamental to our understanding of biological processes. For 

example, the rate at which a species can adapt to a novel or changing environment is largely 

determined in the short term by the amount of genetic variation maintained in a population 

and in the longer term by the availability of new beneficial mutations. However, it is widely 

held that most new spontaneous mutations that affect fitness are harmful (Keightley and 

Lynch 2003; Loewe and Hill 2010), and can have a substantial cumulative effect on the 

fitness of populations (Charlesworth and Charlesworth 1998; Keightley and Eyre-Walker 

1999; Lynch et al. 1999). This can lead, for example, to the maintenance of sex and 

recombination, driven by the increased capacity of sexual populations to efficiently purge 

deleterious alleles (Kondrashov 1988; Otto 2009; Hartfield and Keightley 2012). 

 

 New spontaneous mutations are undoubtedly important in many evolutionary 

processes, but the fitness effects of naturally occurring new mutations have been difficult to 

study. Although many new mutations are expected to occur per generation in a population, 

each one tends to be present at a low frequency (1/N when it originally arises, where N is the 

number of gene copies in the population). The vast majority of alleles found segregating at 

detectable frequencies in natural populations have already been subject to selection and are 

likely to have small fitness effects. As a result, population genetic approaches to infer the 

distribution of mutational effects are therefore most effective at estimating the effects of 

mildly beneficial or weakly deleterious mutations (Keightley and Eyre-Walker 2010).  
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 A common approach to overcome this challenge is to allow mutations to build up in 

the near absence of natural selection in a mutation accumulation (MA) experiment in the 

laboratory. Mutation accumulation reduces the effectiveness of selection by bottlenecking 

experimental populations, making transmission to the next generation random with respect to 

fitness, allowing all but the most strongly deleterious mutations to accumulate. The change in 

fitness among replicate MA lines compared to controls can then be used to estimate the 

genomic rate and the distribution of effects of new mutations (for a review see Halligan and 

Keightley 2009). 

        Typically, fitness declines and among line variance in fitness increases in MA 

experiments, but the magnitude of these changes varies greatly among species (Baer et al. 

2007). In particular, there appear to be substantial differences between unicellular and 

multicellular organisms. The multicellular species that have been studied to date [Amsinckia 

douglasiana (Schoen 2005), Amsinckia gloriosa (Schoen 2005), Arabidopsis thaliana 

(Schultz et al. 1999; Shaw et al. 2000), Caenorhabditis elegans (e.g. Keightley and Caballero 

1997; Baer et al. 2005), Caenorhabditis briggsae (Baer et al. 2005), Drosophila 

melanogaster (e.g. García-Dorado et al. 1998; Charlesworth et al. 2004), Oscheius 

myriophilia (Baer et al. 2005) and Daphnia pulicaria (Schaack et al. 2013) show both a 

greater decline in fitness and greater increase in genetic variance for fitness per generation 

than the two unicellular organisms that have been studied (Sacchoromyces cerevisiae (Zeyl 

and DeVisser 2001; Joseph and Hall 2004; Dickinson 2008) or Eschericiha coli (Kibota and 

Lynch 1996). This difference remains even if fitness change is estimated per cell division 

rather than per generation, and so is not simply a consequence of the fact that the germline of 

a multicellular eukaryotes typically goes through multiple divisions each generation. 

        Variation among species in the outcome of mutation accumulation may reflect 

fundamental differences in the genetics of single-celled microbes compared to multicellular 
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eukaryotes. Single-celled microbes generally have lower mutation rates per base pair, which 

may be related to their larger effective population sizes, allowing selection to remove mutator 

alleles more efficiently from a population (Lynch 2010). However, microbes and 

multicellular organisms have similar mutation rates per base pair per cell division (Drake et 

al. 1998). A relevant factor is that microbes have many genes (accessory genes) that are 

expressed only in specific environmental conditions. The number of accessory genes in 

bacteria is believed to exceed the number of genes required for survival in minimal media 

(Koonin 2003), and in yeast ~60% of open reading frames can be knocked out without 

producing a measurable effect of fitness in either rich or minimal media (Winzeler et al. 

1999). The abundance of sites in the genome where mutant alleles are conditionally neutral in 

a particular environment may partly explain why MA experiments in single-celled microbes 

have tended to show smaller changes in fitness than multicellular organisms. 

        Genome size may also play a role in the outcome of a MA experiment. All else being 

equal, a species with a larger genome will accumulate more mutant alleles than a species with 

a smaller genome, and might therefore show a greater decline in fitness. A refinement of this 

idea is the concept of the "effective genome size", which is the product of genome size and 

the fraction of the genome that is functional (Drake et al. 1998). For example, the outcome of 

mutation accumulation may depend more strongly on the number of protein coding sites in 

the genome than overall genome size, if the genome has a large number of non-functional 

sites. Since the genomes of S. cerevisiae (12.1 Mbp; Goffeau et al. 1996)  and E. coli (4.6-5.7 

Mbp; Lukjancenko et al. 2010) are substantially smaller than those of A. thaliana (157Mbp; 

Kaul et al. 2000), D. melanogaster (140 Mbp; Adams et al. 2000) and C. elegans (97 Mbp; 

The C. elegans Sequencing Consortium 1998), variation in effective genome size may partly 

explain differences in the responses to mutation accumulation in these species. 

In addition to variation in mutational parameters amongst species, there is the 
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possibility of variation within a species. However, few MA studies have included multiple 

genotypes of the same species to address this question directly. Lower bound estimates of the 

genome-wide deleterious mutation rate (U) obtained using the Bateman-Mukai (BM) method 

(Bateman 1959; Mukai 1964) vary substantially between different MA experiments in D. 

melanogaster (Mukai 1964; Mukai et al. 1972; Fernandez and Lopez-Fanjul 1996; García-

Dorado et al. 1998; Fry et al. 1999) and estimates of the rate of decline of variation in fitness 

differed significantly among strains of Daphnia pulicaria (Schaack et al. 2013) . However, 

there is only one study that we are aware of that compared strains of the same species within 

a single experiment to study variation in U (Baer et al. 2005). In that study there was 

significant variation in estimates of U and in the rate of change of fitness between two 

genotypes in two species of nematodes. For a number of reasons, we might expect to find 

variation in the outcome of mutation accumulation within a species. Firstly, there is limited 

but clear evidence for mutation rate variation within species. In bacteria, for example, 

mutator genotypes that have mutation rates as much as 100-fold higher than wild-type strains 

have been isolated from natural populations (Matic et al. 1997; Sundin and Weigand 2007); 

Sundin and Weigand 2007). In Chlamydomonas reinhardtii, sequencing of the genomes of 

MA lines initiated from two different strains yielded estimates of the per nucleotide site 

mutation rate that differ five-fold (Ness et al. 2012; Sung et al. 2012). In D. melanogaster, 

there is also evidence for variation in the mutation rate per nucleotide site per generation 

between strains (Keightley et al. 2009; Schrider et al. 2013; Keightley et al. 2014). 

Furthermore, there is evidence from Drosophila that individuals carrying deleterious alleles 

have elevated mutation rates (Sharp and Agrawal 2012). Such an effect would lead to a 

greater reduction in fitness as a consequence of mutation accumulation in initially less fit 

genotypes, a pattern that has been observed in nematodes (Baer et al. 2005). Another 

possibility is that the underlying distribution of fitness effects (DFE) may differ among 
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individuals or may depend on genetic background (Barrick et al. 2010; Sousa et al. 2012). 

Although the majority of mutations are expected to be deleterious, the fraction of beneficial 

mutations may vary. For example, a higher proportion of mutations are expected to be 

beneficial  in poorly adapted genotypes than in better adapted genotypes (Fisher 1930). 

        In this study, we conduct mutation accumulation in multiple, genetically diverse 

strains of C. reinhardtii. This unicellular microbe has a large effective population size (Ness 

et al. 2012) and shares characteristics with microbial model species, such as S. cerevisiae and 

E. coli and multicellular eukaryote model species such as A. thaliana, C. elegans, and D. 

melanogaster.  Previous studies suggest that its mutation rate per base pair per generation is 

similar to S. cerevisiae and much lower than other multicellular eukaryotes (Ness et al. 2012; 

Sung et al. 2012). However, unlike other model single-cell microbes, including E. coli and S. 

cerevisiae, the genome of C. reinhardtii is relatively large (112 Mbp (Merchant et al. 2007)), 

and similar to that of A. thaliana, C. elegans, and D. melanogaster. It has a large and 

complex proteome (~13x10
6
 codons) that is substantially larger than S. cerevisiae, E. coli, C. 

elegans, and D. melanogaster, and is similar to A. thaliana (Massey 2008).  We allow 

mutations to accumulate in mitotically dividing haploid cells, and assay the effects of 

mutations in the hemizygous state to  address the following questions: (1) To what extent 

does the accumulation of spontaneous mutations affect the mean fitness of C. reinhardtii 

populations and variation in fitness among replicate populations, (2) Is there evidence for 

within species variation in the response to mutation accumulation, and (3) how does the 

effect of  mutation accumulation on fitness in C. reinhardtii compare with the effects 

observed in other unicellular and multicellular species? 

 

Methods 

 

Strains 
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We allowed spontaneous mutations to accumulate in six wild strains of Chlamydomonas 

reinhardtii obtained from the Chlamydomonas Resource Center. The strains were chosen to 

broadly cover the geographic range of the species, and previous work suggests that they are 

genetically diverse (Smith and Lee 2008) (Table 1). Three of the strains were of the MT+ 

mating type and three were of the MT- mating type. In order to confirm the identities of the 

strains, we sequenced the ypt4-VI and ypt4-VII introns (Liss et al. 1997). Each of our 

sequences matched the published sequences. 

 

Culture conditions 

Algal strains were grown in Bold's liquid medium or on Bold's agar plates, the standard 

media for culture of C. reinhardtii in the laboratory. Bold's is a simple salt medium 

containing only essential minerals. C. reinhardtii is photosynthetic and requires no additional 

nutrients for growth.  All cultures were grown at 25°C under white light. 

 

Mutation accumulation 

 To initiate the MA lines, each of the six strains was grown for four days in a separate 

30ml universal tube containing 10ml Bold's medium, shaken, with loose caps to allow 

gaseous exchange. To preserve the ancestral strains of the MA lines, several aliquots from 

each of these cultures were frozen in liquid nitrogen, as detailed below. 

  

 Aliquots of the cultures were streaked onto separate Bold's agar plates and allowed to 

grow for four days to produce individual colonies.  From each of the six strains, we randomly 

selected 15 individual colonies and used these to initiate 15 MA lines (for a total of 90 MA 

lines). Each colony was streaked onto a fresh agar plate by initially placing the colony in a 

10μl spot of Bold's medium to allow separation of the cells and to ensure that the cells would 
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form new individual colonies. 

  

 To allow mutations to accumulate, we bottlenecked the MA lines at regular intervals 

to a single cell. At each transfer, a colony originating from a single cell was selected using a 

random coordinate system and streaked onto a fresh agar plate. Initially, the period between 

transfers alternated between three and four days. This regime was chosen to minimise the 

amount of growth within a colony in order to reduce competition between newly arising 

mutants, while allowing a sufficient period of growth for colonies to become visible even if 

they had accumulated mutations that substantially reduced their growth rate. Previous 

estimates of the number of divisions on plates of one of our ancestral strains (CC-2937) 

showed that the strain could achieve more than eight divisions in a three day period of growth 

(Ness et al. 2012), which is substantially more than the six divisions required for a colony to 

be visible at transfer. Thus, even mutations with substantial effects on fitness should 

accumulate under this protocol. 

 

 We regularly performed tests to determine whether all of the colonies on a plate had 

become visible at the time of transfer. After 19 transfers, it was determined that a small 

minority of colonies (~3%) could not be seen after three days in several lines, so we changed 

to a 4-5-5 day transfer cycle for the duration of the experiment, up to a total of 85 transfers. 

We continued to test regularly whether additional colonies became visible after the transfer 

period. 

 

 We retained the plates from the three prior transfers as backups at room temperature 

in dim light. In the event of a transfer failing, and no colonies growing on a plate, the transfer 

was repeated from the most recent backup plate. About two-thirds of the MA lines 
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experienced this kind of failed transfer at least once. Occasionally an MA line failed to 

transfer repeatedly, in which case the transfer was attempted using an earlier backup plate. If 

a line failed to transfer three times or a line became contaminated with bacteria or fungus, we 

restarted the line using the recent stock that had been previously cryopreserved in liquid 

nitrogen every 15 transfers. We needed to rejuvenate MA lines from their frozen stocks in 

only two cases in the whole experiment. 

 

 Freezing and reconditioning of cultures 

 

 We froze samples from the MA lines regularly at intervals of approximately 15 

transfers (~150 generations) using a modified version of a previously published protocol 

(Crutchfield et al. 1999).  For each MA line, we minimized the chance of picking a colony 

containing a single novel genotype by freezing five day old high density liquid cultures 

derived from several colonies. We also froze the ancestral strains using samples of the 

original cultures that had each been used to initiate the MA lines for each strain (see above). 

For freezing, we mixed 0.9 ml of each dense culture with 0.9ml of cryopreservation medium, 

comprising 10% methanol v/v in Bold's medium. The mixtures were then placed at -80°C in a 

container containing isopropanol that allowed controlled cooling at a rate of ~1°C per minute. 

After four hours, the tubes were cryopreserved in liquid nitrogen. 

 

 To recondition the frozen cultures for growth, cultures were thawed in a water bath at 

35°C for five minutes. The entire contents of a tube were then placed in a 30ml universal tube 

containing 10ml of Bold's medium with loose caps to allow gaseous exchange and incubated 

at 25°C under white light for seven days. 
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Estimating numbers of generations during mutation accumulation 

 

 We estimated the number of generations undergone by each MA line over the course 

of the experiment by measuring the number of cells in colonies grown on agar plates after a 

period of growth equivalent to the times between transfers in the experiment. C. reinhardtii 

divides by binary fission, so the number of generations in a specified time period can be 

calculated from the number of cells within a colony. 

 

 To estimate the number of generations, we reconditioned the MA lines and their 

ancestral strains. These reconditioned cultures were then serially diluted, plated onto Bold's 

agar plates and grown for three, four or five days, i.e., the lengths of time between transfers in 

the experiment.  For each MA line or ancestral strain, we then selected one plate containing 

between 10 and 200 colonies from its dilution series. The number of colonies was counted, 

and then the plate was flooded with Bold's medium and left for two hours to allow the cells to 

disperse into the liquid medium. We then removed the liquid medium containing the cells and 

recorded its volume. C. reinhardtii has a minimum generation time of six hours under perfect 

growing conditions, so the number of cells should not have significantly increased in the two 

hour period.          

 To determine the total number of cells on the plate, we used a Casy Counter to 

determine the density of cells within the suspension removed from the plate. The average 

number of cells per colony (Nf) was then estimated as the number of cells removed from the 

plate divided by the number of colonies on the plate. We then calculated the number of 

generations (G) for each transfer period using the following equation: 

0(log  log   )  
 

log 2 

fN N
G


      (1)   

where N0 = 1 is the initial number of cells in a colony, since each colony was founded by a 
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single cell. We repeated the whole assay, so that we had two replicates measures for each 

ancestral strain and MA line, and took an average to get a single estimate. 

 

 To estimate the total number of generations of mutation accumulation undergone by 

each MA line, we multiplied the number of generations achieved in three, four or five days 

for that line by the number of times that this transfer period occurred during that line’s 

mutation accumulation. To attempt to account for any change of mean generation time during 

the experiment, we determined the total number of transfers undergone by each line at the 

end of the experiment, and assumed that each line grew at the same rate as its ancestral strain 

up to its middle transfer, and thereafter at the same rate as estimated for that line at the end of 

the experiment. 

   

Fitness assays  

 To estimate the fitness of the MA lines and their ancestors we estimated their 

maximal growth rate (μmax) in Bold's liquid medium as described below . MA line cultures 

were first reconditioned after freezing as described above, then inoculated into 30 ml 

universal tubes containing 5 ml of Bold's medium. At this point, we also inoculated each 

ancestral strain into nine separate universal tubes, to create nine pseudolines per ancestral 

strain. These pseudolines enabled us to estimate the among line environmental variance and 

to distinguish environmental from mutational effects. 

 After three days of growth in the universal tubes we created five replicate cultures for 

each of their nine pseudoline control lines of each strain and five replicate cultures for each of 

the 15 MA lines of each strain. These replicate cultures were produced by inoculating the 

cultures from the universal tubes into individual wells of 48 well plates containing 1.5ml of 

Bold’s medium and allowing them to grow for four days. This further four days of 
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conditioning, along with the conditioning in universal tubes, was intended to minimise any 

effects of freezing on growth during the fitness assay.  The cultures were distributed at 

random across three separate blocks, each block consisting of five separate 48 well plates (for 

a total of 15 plates). Within each block, there were three ancestral pseudolines and five MA 

lines from each of the original strains. 

 

 To estimate μmax for each replicate of each line, we measured absorbance through 

time in 96 well plates in a microplate reader. 2 μl of each culture was transferred from a 48 

well plate into the corresponding central 48 wells of a 96 well plate. Each well of the 96 well 

plates contained 200 μl of Bold's medium. The outer wells were also filled with media in 

order to slow evaporation and to humidify the central wells.  Plates were placed at 25°C 

under white light for seven days. We measured the absorbance at 650nm twice daily in the 

first fitness assay and three times daily in the second assay over a seven day period.           

  

To estimate fitness for each replicate, we used the nlstools package in R to fit a 

growth curve to the absorbance data. Growth was modeled using a Baranyi model without lag 

phase, which provides an estimate of the maximum rate of growth (μmax) (Baranyi and 

Roberts 1994).                                           

 

Statistical Analysis 

 The analysis was carried out using R version 3.0.0 (R Core Team 2013). In the first 

run of the fitness assay, the ancestral pseudolines for strain CC-2937 became contaminated 

with bacteria. Initial data exploration showed that the fitness estimates for these control lines 

were anomalous, being significantly lower than any other lines in the assay, including the 

MA lines derived from them. They were also significantly lower than the estimates of the 
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same control lines in the second run of the assay. We therefore analysed the data from the 

two runs of the fitness assay separately, excluding data from CC-2937 from the analyses of 

the first fitness assay. 

 

 We use a general linear mixed model to obtain REML estimates of the among-line 

and within-line variance components for the fitness of the 15 MA lines derived from each 

ancestral strain and for the 9 ancestral pseudolines. The model includes the five replicate 

measures of fitness (maximal growth, μmax) for each MA line as the response variable, with 

line and plate nested within assay block fitted as random factors. Confidence intervals for the 

variance component estimates were calculated assuming that the sampling distribution of the 

variance can be approximated using a scaled chi-square distribution (Knight 2000). 

 

We used a general linear model to estimate the average rate of change of fitness per 

generation as a consequence of mutation accumulation for each strain.  We used fitness (μmax) 

as our response variable, and the average of the 5 replicate measures of each line (MA or 

pseudoline) as a single independent data point for each line when making comparisons 

among strains. Strain was fitted as a fixed factor, whilst the estimated number of generations 

of mutation accumulation was fitted as a covariate. The ancestral pseudolines were included 

in the model as having zero generations of mutation accumulation. We also fitted the 

interaction between strain and number of generations of mutation accumulation to allow us to 

examine whether the change in fitness over time differs amongst strains.  Because we 

expected the variance among lines to increase under mutation accumulation, we included an 

additional parameter (varExp) to allow an exponential variance function structure in our 

model to account for such heterogeneity (Zuur et al. 2009). This parameter allows the 

variance to increase in relation to the value of the covariate in the model. Since our measure 
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of fitness is a logarithmic measure, the rate of change of average fitness estimated from this 

model represents a change in relative fitness rather than absolute fitness.  

 To examine the relationship between fitness of MA lines estimated in liquid media 

and their growth rate on agar plates, we calculated the Pearson correlation coefficient 

between the average fitness measure for each MA line from our fitness assays and its average 

number of generations achieved growing on plates for 4 days. We calculated separate 

correlation coefficients for the MA lines derived from each ancestral strain. The individual P 

values associated with these correlation coefficients were then combined using Fisher’s 

method (Sokal and Rohlf 1994) to provide an overall hypothesis test of the relationship 

between fitness in the two conditions. The analysis was also carried out using the number of 

divisions achieved in five days growth as the measure of fitness on agar plates. 

 

Results 
 

Number of generations of mutation accumulation 

 Based on pilot experiments in which the number of cells in growing colonies was 

counted under a microscope, we determined that wild type colonies become visible after six 

generations of growth. Thus, a mutation that reduces the number of divisions below six per 

transfer period would be effectively lethal. Five of the ancestral strains (CC-1952, CC-2342, 

CC-2344, CC-2931, CC-2937) could achieve substantially more than six generations during 

the shortest period used in our transfer protocol (three days) (Table 2). For example, in the 

case of strain CC-2344, a reduction in fitness of about 21% would be required for division 

rate to drop below six generations per transfer. By the end of the experiment, the division rate 

of most MA lines had declined (Table S1), but still remained well above six generations per 

transfer. Furthermore, during the course of the experiment we increased the minimum 

transfer period from three days to four days, such that mutations that reduce the division rate 

by about 40% could still accumulate. However, in the case of strain CC-1373 the number of 



 

 

This article is protected by copyright. All rights reserved.   16 

 

generations undergone by the ancestral strain was only ~6.5 in a four day period. The CC-

1373 ancestral strain is therefore close to the threshold at which deleterious mutations with 

even small effects on growth rate would be effectively lethal under our transfer protocol, so 

the potential for deleterious mutations to accumulate in MA lines derived from this strain 

may have been limited. In addition, the rate of division of several of its MA lines had 

increased by the end of the experiment, suggesting that advantageous mutations may have 

accumulated (Table S1). Our MA protocol presumably resulted in more effective natural 

selection against slow growing lines in CC-1373 than lines derived from faster-growing 

ancestral strains. We therefore exclude this strain from further analysis presented below. 

Estimates of mutational parameters including CC-1373 in the analysis are presented in the 

supporting information (Tables S2-S4) 

 The number of generations per transfer also provides us with an estimate of 

the effective population size Ne. This can be calculated as the harmonic mean of colony size 

throughout the transfer period. Over the longest transfer period used, the number of 

generations of growth was in the range 12 – 13, so Ne ≈ 7. In a haploid organism mutations 

for which Nes < 1 behave as effectively neutral, implying that selection would be effective 

against mutations with fitness effects of more than 15% . 

 We used the measures of growth on plates to estimate the total number of generations 

of mutation accumulation undergone by each line. The average number of generations across 

all MA lines was 987 (Table 2). The number of generations ranged from 1130 for one of the 

lines derived from CC-2342 to 404 generations for one of the CC-2937 MA lines that became 

contaminated during mutation accumulation and had to be re-established from frozen stock 

from an earlier time point (Table S1). 

 

Changes in variance of fitness as a consequence of mutation accumulation 
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 For each ancestral strain, we estimated the variance component for fitness among the 

15 MA lines and among the 9 ancestral pseudolines (Table 3). In all cases, among line 

variance components for the MA lines are significantly larger than the corresponding 

estimates for their ancestral strains (Fig. 1, Table 3). We calculated estimates of the new 

mutational variance per generation, Vm, for each strain from the difference between the 

among line variance component of the MA lines and that of the corresponding pseudolines  

divided by the estimated number of generations of mutation accumulation (Table 3). 

Estimates range from 1.03 x 10
-7

 to 1.42 x 10
-6

, with a mean of 5.42 x 10
-7

 across the two 

assays. Standardizing the square root of these variance estimates by the mean fitness of the 

ancestral strains yields estimates of the coefficient of mutational variation, CVm Ancestor. These 

range from 0.19% for CC-2931 to 0.78% for CC-2342 in the first assay (Table 3), with a 

mean across all strains and both fitness assays of 0.54%. Calculating the coefficient of 

mutational variation for each strain by scaling by the mean fitness of its MA lines CVm MA 

produced similar values (Table 3).    

 

Changes in mean fitness 

 To examine the effect of mutation accumulation on mean fitness, we modeled the 

average fitness of the MA lines as a function of the number of generations of mutation 

accumulation. This analysis reveals that there is a negative relationship (b) between mean 

fitness and the number of generations of mutation accumulation in both fitness assays (first 

assay: b = -3.5x10
-5

 μmax generation
-1

, SE = 0.5x10
-5

, F1,87 = 57, P < 0.0001, Fig. 2a; second 

assay:  b = -1.3x10
-5

 μmax generation
-1

, SE = 0.4x10
-5

, F1,103 = 8.42, P = 0.0014, Fig. 2b). 

There is no evidence for variation in the effects of mutation accumulation among strains, 

since the strain-by-number of generations interaction is non-significant in both the first (F3,87 

= 2.18, P = 0.095) and second fitness assay (F4,103 = 0.45, P = 0.77). In the first fitness assay, 
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strain CC-1952 showed the greatest decline in mean fitness (b = -5.1x10
-5

 μmax generation
-1

, 

SE = 1.0x10
-5

), whereas CC-2344 had the smallest decline in mean fitness (b = -1.6x10
-5

μmax 

generation
-1

, SE= 1.1x10
-5

). In the second fitness assay CC-1952 (b = -1.9x10
-5

 μmax 

generation
-1

, SE = 0.9x10
-5

) was again estimated to have the greatest decline in mean fitness, 

whereas CC-2937 had the smallest decline (b = -0.3x10
-6

 μmax generation
-1

, SE = 1.0x10
-5

). 

 

Correlation across environments 

 Solid and liquid media represent very different growth environments for C. 

reinhardtii, even when they contain the same chemical components (Goho and Bell 2000). 

For each ancestral strain we examined the correlation across MA lines between the estimates 

of growth rate in liquid media with estimates of the number of generations on solid agar 

media over four and five days. The correlation coefficients of all strains are positive 

(Pearson’s r 4-day: range = 0.258 to 0.806, mean = 0.606, 5-day 0.274 to 0.668, mean = 

0.547), and the overall relationships were significant between average growth rate in liquid 

and four days of growth on agar plates (χ2
 = 43.86, df =10, P< 0.001, Fig. 3a) and average 

growth rate in liquid and five days of growth on agar plates (χ2
 = 35.49, df = 10, P< 0.001, 

Fig. 3b). 

 

Mutational effects and genomic deleterious mutation rate 

 We used the observed reductions in mean growth rate and increases in genetic 

variation to calculate BM estimates for the genomic rate of deleterious mutation (U) and the 

average effect of a deleterious mutation (E(a)). The BM method assumes that mutational 

effects are invariant, so estimates of U and the mean effect of a mutation are lower and upper 

bound estimates, respectively. Standard errors for these parameters were calculated using the 

Delta method (Lynch and Walsh 1997).  Estimates of U ranged from 3.1 x 10
-5

 per generation 



 

 

This article is protected by copyright. All rights reserved.   19 

 

for CC-2937 in the second fitness assay to 1.2 x 10
-2

 in CC-2931 in the first fitness assay 

(Table 4), with an average estimate across both assays of 2.03 x 10
-3

. The average effect of a 

deleterious mutation (E(a)) varied from -2.91 x 10
-3

 μmax generation
-1

 in strain CC-2931 in the 

first fitness assay to -1.0 x 10
-1

 in CC-2937 in the second fitness assay (Table 4), with an 

average estimate across both assays of -4.07 x 10
-2

. 

          

Discussion 

 We estimated the rate of increase in genetic variance for fitness and the rate of change 

of mean fitness in C. reinhardtii lines that had been maintained under relaxed selection for 

~1000 generations. In common with the majority of previous MA studies, an increase in 

variance amongst MA lines derived from a single ancestral strain was accompanied by a 

decline in mean fitness, consistent with lines accumulating predominantly deleterious 

mutations. 

 

 There is little evidence to suggest that the effects of mutation accumulation varied 

among the different strains. The rate of decline of mean fitness did not significantly differ 

among MA lines derived from different ancestral strains. The standardised estimates of the 

increase in variance varied among strains within a single run of the fitness assay, but there 

was almost as much variation among the estimates for a single strain between two runs of the 

fitness assay as there was between strains. Averaging the BM estimates, the deleterious 

mutation rate (U) and average mutational effect (E(a)) across our five strains were 2.02x10
-3

 

and 4.15x10
-2

, respectively. 

 

 The ancestral strains used in this study differed in initial fitness, and there are reasons 

to expect that this could affect the rate at which fitness declines as mutations accumulate. 
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Strains with high starting fitness are already well adapted to the assay environment and the 

potential number of beneficial mutations is likely to be small. In the case of less well adapted 

lines, the potential for mutations to improve fitness is greater, and this might lead to a higher 

ratio of beneficial to deleterious mutations, and a slower rate of fitness decline (Fisher 1930). 

Alternatively, there is empirical evidence that the mutation rate itself may depend on the 

fitness of an organism. For example, a study in D. melanogaster showed that individuals of 

reduced genetic quality have an elevated mutation rate (Sharp and Agrawal 2012). The lack 

of any differences among our strains does not support either of these predictions. However, 

although there was variation in fitness amongst all of our ancestral strains, it is likely that all 

of the strains were still reasonably well adapted to the laboratory environment, and so the 

range of initial fitness differences may have been too similar to allow us to detect such 

effects. 

 

 Selection of C. reinhardtii populations on either solid or liquid Bold's media leads to 

adaptation to the specific media (either solid or liquid), but minimal correlated adaptation to 

the other media (Goho and Bell 2000), implying that the genetic basis of adaptation to the 

two environments are very different. The fact that we see a positive correlation between the 

fitness of our MA lines when assayed in solid and liquid media suggests that many of the 

deleterious mutations that have accumulated have effects that are not environment specific. 

However, we note that both of these environments are relatively benign. It will be interesting 

to examine whether similar patterns are seen in more harsh or complex environments, where 

more genes are likely to be expressed. 

 

 Several of our MA lines could not be revived from their frozen stocks (13 in the first 

fitness assay and 4 in the second fitness assay, Table S1), so could not be included in the 
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fitness assays. This may have affected our estimates of mutational parameters, since we 

cannot be certain whether the lines failed to grow because they had low fitness, or because 

they were killed during the freezing. Our estimates of the change in mean fitness per 

generation (ΔM) may therefore be underestimates if these lines had atypically low fitnesses. 

However, typically, one or two lines for each genotype failed to grow (Table S1), so we 

expect little systematic bias affecting estimates of ΔM or change in variance per generation 

(ΔV) between strains. Although several CC-2342 lines failed to grow in the first assay (seven, 

compared to two in the second assay), the estimates of ΔM were actually lower in the first 

assay than the second.   

 

 Our average estimates (across strains and fitness assays) of the standardised change in 

variance of fitness per generation (CVm ancestor) (0.54%) and mean fitness ΔM  (-2.44×10
-5

) are 

lower than the average estimates for the multicellular eukaryotes Arabidopsis thaliana (4.2%, 

-5×10
-3

), Drosophila melanogaster (1.5%, -4.9×10
-3

), Caenorhabditis elegans (1.5%, -

1.1×10
-3

) and Daphnia pulicaria (no CVm estimate, -1.4×10
-3

; Schaack et al. 2013) ), but 

higher than estimates for the unicellular organisms Saccharomyces cerevisiae (0.1%, -5.5×10
-

6
) and Escherichia coli (0.02%, -2.5×10

-6
) (see Table 5 and S5). The lower changes in the 

mean and variance of fitness per generation could be due to the fact that microbes undergo a 

single cell division per generation, whereas there are multiple germline cell divisions per 

generation in the multicellular species listed. It is also possible that differences are caused by 

the fact that mutations are accumulated in haploids and assayed in the hemizygous state in C. 

reinhardtii  and E. coli and accumulated in diploids in A. thaliana, D. melanogaster and C. 

elegans and usually assayed in the homozygous state. By controlling for the estimated 

number of germline divisions per generation, the ~2180-fold variation in ΔM across these 

MA studies is reduced to only ~60-fold (see Table 5), and the estimate for C. reinhardtii 
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remains more similar to multicellular eukaryotes than unicellular microbes. Using published 

estimates of mutation rates and genome sizes, we can also scale values of ΔM by the total 

number of mutations per cell division to get an estimate of ΔM per genomic mutation. This 

allows comparison amongst species, independent of generation time, germline cell divisions 

per generation, genome size or number of mutations. The variation in ΔM per genomic 

mutation is only 7-fold between species, suggesting that differences in ΔM amongst MA 

studies in these organisms is driven largely by the cumulative number of mutations.  If we 

control for the size of the protein coding fraction of each genome, the variation in ΔM 

amongst species is not further reduced. This is possibly because a sizeable fraction of each 

genome is functional noncoding DNA and the amount varies substantially between species 

(Lynch 2007). Similar calculations using CVm  show a similar pattern: much of the variation 

amongst species disappears if the size of the genome is taken into account and there is even 

less variation when controlling for the number of protein coding sites in the genome (Table 

S5). It should be noted that estimates of ΔM and CVm are quite noisy (e.g. ΔM varies 36-fold 

within D. melanogaster alone) limiting the power of this analysis. 

 Our BM estimates of the average mutational effect, E(a), are generally lower than 

observed in other organisms, averaging -0.04 across strains and fitness assays, and ranging 

between -0.003 to -0.1. Even the largest estimate is lower than mean estimates from A. 

thaliana (-0.39), C. elegans (-0.25), D. melanogaster (-0.14), and S. cerevisiae (-0.13), but 

similar to E. coli (-0.012). This is consistent with new mutations in C. reinhardtii generally 

having small deleterious effects compared to multicellular organisms. However, if significant 

numbers of mutations were effectively lethal under our protocol, reducing fitness by more 

than 20%, or beneficial mutations became fixed, then the average mutational effect might be 

underestimated. We can compare mean BM estimates of E(a) for each species to our 

measured values of ∆M/mutation. E(a) is generally more negative, because it is estimated 
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only from mutations that have detectable effects, which tend to be deleterious. ∆M/mutation, 

however, measures the effect for any mutation including neutral or beneficial mutations. The 

fact that it E(a) is more negative than ∆M/mutation across all studies (Table 5)  is consistent 

with a substantial fraction of mutations having small effects on fitness. We note that our 

average BM estimate of U (2.03x10-3 ) is higher than mean estimates for S. cerevisiae 

(2.4x10
-5

), E. coli (1.7 x10
-4

), similar to C. elegans (7.0x10
-3

), but lower than D. 

melanogaster (1.0x10
-1

) and A. thaliana (2.7x10
-2

). 

If we divide the average estimate of the genome-wide deleterious mutation rate U 

from the current study (2.03x10
-3

) by an estimate of the genome wide mutation rate (3.62x10
-

2
) that we previously obtained based on whole genome sequencing (Ness et al. 2012), we 

infer that ~5.6% of spontaneous mutations have detectable deleterious effect on fitness. A 

second direct estimate of the genome wide mutation rate, based on whole genome sequencing 

of a different strain of C. reinhardtii  (7.57x10
-3

) is five times lower than our estimate (Sung 

et al. 2012), which suggests that ~27% of all mutations are deleterious. Although these 

estimates are different, both imply that a substantial number of mutations have no measurable 

effect on fitness in the laboratory environment. This may be because many deleterious 

mutation have extremely small effects on fitness making them effectively undetectable by the 

approaches used in this paper (Davies et al. 1999), but it could alternatively be explained if 

only a fraction of genes were expressed in C. reinhardtii in the fitness assay environment.   

 

In summary, by measuring the response of C. reinhardtii, a microbe with a relatively 

large genome, to mutation accumulation, we have provided evidence that the observed 

differences in mutational parameters between microbes and multicellular organisms is 

primarily a result of differences in genome size as it relates to the number of mutations 

expected to accumulate. We found no evidence that the initial level of adaptation of a strain 
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affected the rate at which its fitness declined during mutation accumulation when estimated 

in an environment to which all genotypes were reasonably well adapted. Whether this result 

extends to environments to which the strains were initially less adapted remains to be seen. 
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Table 1 Strains used in the MA experiment. 

Strain Isolated (location/year) Mating type 

CC-1373 South Deerfield, MA, USA / 1945 + 

CC-1952 MN, USA / 1986 - 

CC-2342 PA, USA / 1989 - 

CC-2344 PA, USA /1989 + 

CC-2931 Durham, NC, USA / 1991 - 

CC-2937 QC, Canada /1993 + 
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Table 2 Estimates of numbers of generations undergone by each strain between transfers and 

over the entire MA experiment. Estimates are shown for three, four and five day transfer 

periods for the ancestors. The three day transfer period was only used in the early part of the 

study, and so three days measures were not made on the MA lines. 

Strain 

Numbe
r of 

genera
tions 

by 
ancest
or in 3 
days 

Numbe
r of 

generat
ions by 
ancest
or in 4 
days 

Numbe
r of 

genera
tions 

by 
ancest
or in 5 
days  

Average 
number of 

generations 
by MA lines 

in 4 days  
(95% CIs) 

Average 
number of 

generations 
by MA lines 

in 5 days 
(95% CIs) 

Total 
number of 

generations 
of MA 

(95% CIs) 

CC-
1952 

8.68 12.39 14.34 
11.49 

(11.00, 11.98) 
13.12 

(12.63, 13.60) 

1021.12 
(969.37, 
1072.88) 

CC-
2342 

10.90 12.72 13.46 
11.43 

(10.55, 12.31) 
13.54 

(12.76, 14.31) 

1032.65 
(942.31, 
1122.98) 

CC-
2344 

7.54 11.39 12.64 
10.67 

(10.11, 11.23) 
12.22 

(11.73, 12.71) 

938.10 
(912.50, 
963.69) 

CC-
2931 

9.50 12.06 13.48 
11.08 

(10.36, 11.79) 
12.75 

(11.87, 13.63) 

1025.59 
(985.90, 
1065.28) 

CC-
2937 

8.17 12.15 13.94 
11.24 

(10.77, 11.70) 
13.08 

(12.67, 13.48) 

929.07 
(854.31, 
1003.83) 
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Table 3 Estimates of mutational variance for fitness assays. Columns show estimates from 

the 1
st
 and 2

nd
  replicate assays (Anc = ancestor, MA= mutation accumulation lines).  

Strai

n 

Variance 1 

(95% CIs) 
 

F-ratio 
test 2 

 

ΔV 3 

ΔV per 
generati

on 4 

= Vm 

CVm 

Ancestor 
5 

(% per 
generation

) 

CVm MA 6 

(% per 
generation

) 

1st 
Anc  

1st 
MA 

2nd  
Anc  

2nd 
MA  

1st 
2n
d 

1st 
2n
d 

1st 
2n
d 

1st 
2n
d 

1st 
2n
d  

CC-

1952 

 
0 
 

(0,0) 
 

 
6.93 x 
10

-4 

 
(3.56 x 
10

-4
, 

1.89 x 
10

-3
) 

 

 
6.99 x 10

-5 

 
(3.19 x 10

-

5 
, 2.57 x 
10

-4
) 

 

 
5.99 x 10

-4 

 
(3.15  x 

10
-4 

, 1.55 
x 10

-3
) 

 

NA
* 

8.5
7* 

6.9
3 
x 

10
-4

 

5.2
9 
x 

10
-4

 

6.7
9 
x 

10
-7

 

5.1
8 
x 

10
-7

 

0.5
4 

0.5
5 

0.8
2 

0.6
6 

CC-

2342 

 
2.86 x 
10

-17 

 
(1.30 x 
10

-17 
, 

1.05 x 
10

-16 
) 

 

 
1.47 x 
10

-3 

 
(6.42  x 
10

-4
 , 

6.08  x 
10

-3
) 

 

 
2.43 x 10

-4 

 
( 1.11  x 

10
-4

 , 8.90 
x 10

-4
) 

 

 
9.82 x 10

-4 

 
(5.16  x 

10
-4 

, 2.55 
x 10

-3
) 

 

5.1
4 
x 

10
1

3
* 

4.0
4* 

1.4
7 x 
10

-3
 

7.3
9 
x 

10
-4

 

1.4
2 
x 

10
-6

 

7.1
6 
x 

10
-7

 

0.7
8 

0.6
5 

1.0
6 

0.8
5 

CC-

2344 

0 
 

(0,0) 
 

 
6.3 x 10

-

4 

 
(3.31  x 

10
-4 

, 
1.64 x 
10

-3
) 

 

 
0 
 

(0,0) 
 

 
1.09 x 10

-4 

 
(5.75 x 10

-

5
 , 2.84 x 

10
-4

) 
 

NA
* 

NA* 

6.3
0 
x 

10
-4

 

1.0
9 
x 

10
-4

 

6.7
2 
x 

10
-7

 

1.1
6 
x 

10
-7

 

0.7
7 

0.3
0 

0.8
9 

0.3
2 

CC-

2931 

 
5.24 x 
10

-17 

 
(2.39 x 
10

-17
, 

1.93 x 
10

-16 
) 

 

 
1.061  x 

10
-4 

 
(5.46 x 
10

-5
 , 

2.89 x 
10

-4
) 

 

 
1.99x 10

-4 

 
(9.07 x 10

-

5
 , 7.30 x 

10
-4

) 
 

 
7.76 x 10

-4 

 
(4.16 x 10

-

4
, 

1.93x 10
-3

) 
 

2.0
2 
x 

10
1

2
* 

3.9* 

1.0
6 
x 

10
-4

 

5.7
7 
x 

10
-4

 

1.0
3 
x 

10
-7

 

5.6
3 x 
10

-7
 

0.1
9 

0.5
8 

0.2
5 

0.7
1 

CC-

2937 
- - 

 
7.15 x 10

-

21 

 
(3.26 x 10

-

21
, 

2.62 x 10
-

20
) 

 
2.91 x 10

-4 

 
(1.56  x 

10
-4

, 
7.24 x 10

-

4
) 
 

- 

4.0
7 
x 

10
16

* 

- 

2.9
1 
x 

10
-4

 

- 

3.1
3 
x 

10
-7

 

- 
0.5
1 

- 
0.5
4 

1
 among MA line variance component. 

2
 ancestral among pseudoline variance component divided by the between line MA variance component; the 

critical value  = 3.006 with df 15,9 (* = significant difference at the 5% level between MA and ancestral 

variance).  
3
  change in the among line variance component of fitness between the MA lines and their ancestors.  

4 
Mutational heritability calculated as ΔV /number of generations.   

5 
coefficients of mutational variance calculated as the square root of ΔV per generation divided by the mean 

fitness of the ancestral lines 
6 
 coefficients of mutational variance calculated as the square root of ΔV per generation divided by the mean 

fitness of the MA lines 
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Table 4 Estimates of fitness and mutational parameters from the fitness assays. Separate 

columns show estimates from the 1
st
 and 2

nd
  replicate assays.  

Strai

n 

Fitness 
 

(95% CI) 

ΔM (x 10-3) 
per 

generation 1 

 
(95% CI (x 10-

3)) 

 
U 2 

 
(SE) 

E(a) 3 
 

(SE) 

1st 
Anc 

1st 
MA 

2nd 
Anc 

2nd 
MA 

1st 2nd 1st 2nd 1st 2nd 

CC-

1952 

0.153 
 

(0.127, 
0.178) 

0.100 
 

(0.079, 
0.121) 

0.130 
(0.102, 
0.158) 

0.108 
(0.071, 
0.145) 

-0.051 
(-

0.071,  
-0.030) 

-0.019 
(-

0.037, 
-0.001) 

3.80 x 
10

-3 

(5.84 x 
10

-3
) 

6.84 x 
10

-4 

(1.03 x 
10

-3
) 

-1.34 x 
10

-2 

(1.30 x 
10

-2
) 

-2.75 x 
10

-2 

(2.67 x 
10

-2
) 

CC-

2342 

0.153 
 

(0.138, 
0.168) 

0.112 
 

(0.061, 
0.163) 

0.130 
 

(0.112, 
0.148) 

0.099 
(0.078, 
0.120) 

-0.042 
(-

0.067,  
-0.017) 

-0.017 
(-

0.035, 
+0.001) 

 

1.24 x 
10

-3 

(1.87 x 
10

-3
) 

3.92 x 
10

-4 

(5.93 x 
10

-4
) 

-3.38 x 
10

-2 

(3.28 x 
10

-2
) 

-4.27 x 
10

-2 

(4.14 x 
10

-2
) 

CC-

2344 

0.107 
(0.089, 
0.125) 

0.092 
(0.062, 
0.121) 

0.114 
(0.100, 
0.128) 

0.105 
(0.086, 
0.124) 

-0.016 
(-

0.036, 
+0.005) 

-0.011 
(-

0.031, 
+0.008) 

 

3.68 x 
10

-4 

(5.56 x 
10

-4
) 

1.13 x 
10

-3 

(1.71 x 
10

-3
) 

-4.27 x 
10

-2 

(4.12 x 
10

-2
) 

-1.02 x 
10

-2 

(9.89 x 
10

-3
) 

CC-

2931 

0.166 
(0.145, 
0.187) 

0.129 
(0.110, 
0.148) 

0.130 
(0.111, 
0.149) 

0.106 
(0.088, 
0.124) 

-0.036 
(-

0.056, 
-0.015) 

-0.017 
(-0.034 
+0.001) 

1.22 x 
10

-2 

(1.84 x 
10

-2
) 

4.89 x 
10

-4 

(7.39 x 
10

-4
) 

-2.91 x 
10

-3 

(2.82 x 
10

-3
) 

-3.39 x 
10

-2 

(3.29 x 
10

 
-2

)
 

CC-

2937 
- - 

0.109 
(0.098, 
0.121) 

0.104 
(0.090, 
0.118) 

- 

-0.003 
(-

0.022, 
+0.016) 

- 

3.13 x 
10

-5 

(4.73 x 
10

-5
) 

- 

-1.00 x 
10

-1 

(9.70x1
0

-2
) 

1
 change in mean fitness per generation between the ancestral pseudolines (Anc) and the MA lines (MA) for 

each strain.  
2 
Bateman-Mukai estimates of the genomic deleterious mutation rate per generation.  

3 
Bateman-Mukai estimates of the mean mutational effect per generation. 
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Table 5  Mutational and genomic properties of model organisms used for MA experiments. The organisms listed are those for which genomic 

and phenotypic outcomes of MA are available. The figures reported are the mean value for each species as summarised in Halligan and 

Keightley (2009 and references therein). Using available estimates of the mutation rate (μ), genome size and, proteome size we calculate the 

change in fitness per mutation. 

 

Organism 
µ  

( / bp * 
gen.) 

Genome 
size (bp) 

Proteome 
Size

1
 

(codons) 

Coding 
positions 

2
 

Ploidy 
Cell div. 
/ gen.

3
 

Mut. / div. 
* genome 

Mut. / div. 
* proteome 

CVm ΔM 
ΔM / 
div. 

ΔM 
/genome * 

mut. 

ΔM 
/proteome 

* mut. 
U E(a) 

A.thaliana 
6.50 

x 10-9 

1.57 

x 108 

1.34 

x 107 

2.01 

x 107 
2 35 0.0292 0.0037 4.15 -5.45 x 10-3 

-1.56 x 

10-4 
-5.34 x 10-3 -4.17 x 10-2 0.027 -0.39 

C. elegans 
5.75 

x 10-9 

9.70 

x 107 

1.00 

x 107 

1.51 

x 107 
2 9 0.062 0.0096 1.49 -1.07 x 10-3 

-1.18 x 

10-4 
-1.91 x 10-3 -1.23 x 10-2 0.007 -0.25 

D. melanogaster5 
4.65 

x 10-9 

1.40 

x 108 

7.10 

x 106 

1.06 

x 107 
2 36 0.018 0.0014 1.54 -4.87 x 10-3 

-1.35 x 

10-4 
-7.15 x 10-3 -9.84 x 10-2 0.1 -0.14 

C. reinhardtii 
2.08 

x 10-10 

1.12 

x 108 

1.31 

x 107 

1.96 

x 107 
1 1 0.0233 0.0041 0.54 -2.44 x 10-5 

-2.44 x 

10-5 
-1.05 x 10-3 -5.97 x 10-3 0.002 -0.04 

S. cerevisiae 
3.30 

x 10-10 

1.25 

x 107 

2.91 

x 106 

4.36 

x 106 
1 1 0.0041 0.0014 0.09 -5.45 x 10-6 

-5.45 x 

10-6 
-1.32 x 10-3 -3.79 x 10-3 2.4 x 10-5 -0.13 

E. coli 
2.60 

x 10-10 

4.64 

x 106 

1.32 

x 106 

1.97 

x 108 
1 1 0.0012 0.0005 0.02 -2.50 x 10-6 

-2.50 x 

10-6 
-2.07 x 10-3 -4.88 x 10-3 1.7 x 10-4 -0.01 

gen. : generations 

div. : divisions 
1
 Proteome sizes were taken from Massey 2008 and references therein. 

2
 The number of coding positions was estimated as 2/3 of CDS to account for synonymous changes 

3 
Cell divisions per generation were taken from Lynch (2010) and references therein. 

4
 MA results were taken from table 1 of Halligan and Keightley (2009) which tabulated standardized parameter estimates from MA studies 

5
 Mean values for D. melanogaster exclude the extreme outlier values of Gong et al. 2005 (see Halligan and Keightley for details). 
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Fig 1. Among-line variance in fitness for each strain in the first (a) and second (b) fitness 

assays. Black circles are the among-line variance component for the ancestral pseudolines for 

each strain, and white circles are the among-line variance component for the MA lines for 

each strain. Bars are 95% confidence intervals. 
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Fig. 2. Estimates of fitness plotted against number of generations of mutation accumulation 

for all strains in the first (a) and second (b) fitness assays. The lines represent the linear 

regressions of fitness on the number of generations of mutation accumulation, with the 

ancestral pseudolines at 0 generations. 
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Fig.3 Correlation between the two measures of fitness: number of generations on agar plates 

and maximal specific growth rate (μmax) in liquid. (a) number of generations in 4 days on agar 

plates versus μmax , (b) number of generations in 5 days on agar plates versus μmax. 

 
 


