3,049 research outputs found

    Apollo 9 multiband photography experiment 5065 Interim post-flight calibration report

    Get PDF
    Camera and filter postflight spectrum analysis for Apollo 9 multiband photography experimen

    Solar Flare Impulsive Phase Emission Observed with SDO/EVE

    Full text link
    Differential emission measures (DEMs) during the impulsive phase of solar flares were constructed using observations from the EUV Variability Experiment (EVE) and the Markov-Chain Monte Carlo method. Emission lines from ions formed over the temperature range log T = 5.8 - 7.2 allow the evolution of the DEM to be studied over a wide temperature range at 10s cadence. The technique was applied to several M- and X-class flares, where impulsive phase EUV emission is observable in the disk-integrated EVE spectra from emission lines formed up to 3 - 4 MK, and we use spatially-unresolved EVE observations to infer the thermal structure of the emitting region. For the nine events studied the DEMs exhibited a two component distribution during the impulsive phase, a low temperature component with peak temperature of 1 - 2 MK, and a broad high temperature one from 7 - 30 MK. A bimodal high temperature component is also found for several events, with peaks at 8 and 25 MK during the impulsive phase. The origin of the emission was verified using AIA images to be the flare ribbons and footpoints, indicating that the constructed DEMs represent the spatially-average thermal structure of the chromospheric flare emission during the impulsive phase.Comment: 18 pages, 6 figures, accepted for publication in Ap

    The Area Distribution of Solar Magnetic Bright Points

    Get PDF
    Magnetic Bright Points (MBPs) are among the smallest observable objects on the solar photosphere. A combination of G-band observations and numerical simulations is used to determine their area distribution. An automatic detection algorithm, employing 1-dimensional intensity profiling, is utilized to identify these structures in the observed and simulated datasets. Both distributions peak at an area of \approx45000 km2^2, with a sharp decrease towards smaller areas. The distributions conform with log-normal statistics, which suggests that flux fragmentation dominates over flux convergence. Radiative magneto-convection simulations indicate an independence in the MBP area distribution for differing magnetic flux densities. The most commonly occurring bright point size corresponds to the typical width of intergranular lanes.Comment: Astrophysical Journal, accepte

    Propagating Wave Phenomena Detected in Observations and Simulations of the Lower Solar Atmosphere

    Get PDF
    We present high-cadence observations and simulations of the solar photosphere, obtained using the Rapid Oscillations in the Solar Atmosphere imaging system and the MuRAM magneto-hydrodynamic code, respectively. Each dataset demonstrates a wealth of magneto-acoustic oscillatory behaviour, visible as periodic intensity fluctuations with periods in the range 110-600 s. Almost no propagating waves with periods less than 140s and 110s are detected in the observational and simulated datasets, respectively. High concentrations of power are found in highly magnetised regions, such as magnetic bright points and intergranular lanes. Radiative diagnostics of the photospheric simulations replicate our observational results, confirming that the current breed of magneto-hydrodynamic simulations are able to accurately represent the lower solar atmosphere. All observed oscillations are generated as a result of naturally occurring magnetoconvective processes, with no specific input driver present. Using contribution functions extracted from our numerical simulations, we estimate minimum G-band and 4170 Angstrom continuum formation heights of 100 km and 25 km, respectively. Detected magneto-acoustic oscillations exhibit a dominant phase delay of -8 degrees between the G-band and 4170 Angstrom continuum observations, suggesting the presence of upwardly propagating waves. More than 73% of MBPs (73% from observations, 96% from simulations) display upwardly propagating wave phenomena, suggesting the abundant nature of oscillatory behaviour detected higher in the solar atmosphere may be traced back to magnetoconvective processes occurring in the upper layers of the Sun's convection zone.Comment: 13 pages, 9 figures, accepted into Ap

    Radiative hydrodynamic modelling and observations of the X-class solar flare on 2011 March 9

    Get PDF
    We investigated the response of the solar atmosphere to non-thermal electron beam heating using the radiative transfer and hydrodynamics modelling code RADYN. The temporal evolution of the parameters that describe the non-thermal electron energy distribution were derived from hard X-ray observations of a particular flare, and we compared the modelled and observed parameters. The evolution of the non-thermal electron beam parameters during the X1.5 solar flare on 2011 March 9 were obtained from analysis of RHESSI X-ray spectra. The RADYN flare model was allowed to evolve for 110 seconds, after which the electron beam heating was ended, and was then allowed to continue evolving for a further 300s. The modelled flare parameters were compared to the observed parameters determined from extreme-ultraviolet spectroscopy. The model produced a hotter and denser flare loop than that observed and also cooled more rapidly, suggesting that additional energy input in the decay phase of the flare is required. In the explosive evaporation phase a region of high-density cool material propagated upward through the corona. This material underwent a rapid increase in temperature as it was unable to radiate away all of the energy deposited across it by the non-thermal electron beam and via thermal conduction. A narrow and high-density (ne1015n_{e} \le 10^{15} cm3^{-3}) region at the base of the flare transition region was the source of optical line emission in the model atmosphere. The collision-stopping depth of electrons was calculated throughout the evolution of the flare, and it was found that the compression of the lower atmosphere may permit electrons to penetrate farther into a flaring atmosphere compared to a quiet Sun atmosphere.Comment: 12 pages, 12 figure

    Departure of high temperature iron lines from the equilibrium state in flaring solar plasmas

    Get PDF
    The aim of this study is to clarify if the assumption of ionization equilibrium and a Maxwellian electron energy distribution is valid in flaring solar plasmas. We analyze the 2014 December 20 X1.8 flare, in which the \ion{Fe}{xxi} 187~\AA, \ion{Fe}{xxii} 253~\AA, \ion{Fe}{xxiii} 263~\AA\ and \ion{Fe}{xxiv} 255~\AA\ emission lines were simultaneously observed by the EUV Imaging Spectrometer onboard the Hinode satellite. Intensity ratios among these high temperature Fe lines are compared and departures from isothermal conditions and ionization equilibrium examined. Temperatures derived from intensity ratios involving these four lines show significant discrepancies at the flare footpoints in the impulsive phase, and at the looptop in the gradual phase. Among these, the temperature derived from the \ion{Fe}{xxii}/\ion{Fe}{xxiv} intensity ratio is the lowest, which cannot be explained if we assume a Maxwellian electron distribution and ionization equilibrium, even in the case of a multi-thermal structure. This result suggests that the assumption of ionization equilibrium and/or a Maxwellian electron energy distribution can be violated in evaporating solar plasma around 10~MK.Comment: 10 pages, 4 figures, to appear in Ap

    Infrared Search for Young Stars in HI High-velocity Clouds

    Full text link
    We have searched the IRAS Point Source Catalog and HIRES maps for young stellar objects (YSOs) in the direction of five \HI high-velocity clouds (HVCs). In agreement with optical searches in the halo, no evidence was found for extensive star-forming activity inside the high-latitude HVCs. Specifically, we have found no signs of star formation or YSOs in the direction of the A IV cloud or in the very-high-velocity clouds HVC~110-7-465 and HVC~114-10-440. We have identified only one young star in the direction of the M~I.1 cloud, which shows almost perfect alignment with a knot of \HI emission. Because of the small number of early-type stars observed in the halo, the probability for such a positional coincidence is low; thus, this young star appears to be physically associated with the M~I.1 cloud. We have also identified a good YSO candidate in the \HI shell-like structure observed in the core region of the low-latitude cloud complex H (HVC~131+1-200). This region could be a supernova remnant with several other YSO candidates formed along the shock front produced by the explosion. In agreement with recent theoretical estimates, these results point to a low but significant star-formation rate in intermediate and high Galactic latitude HVCs. For M~I.1 in particular, we estimate that the efficiency of the star-formation process is M(YSO)/M(\HI)\ga 10^{-4}-10^{-3} by mass. Such efficiency is sufficient to account for (a) the existence of the few young blue stars whose ages imply that they were born in the Galactic halo, and (b) the nonprimordial metallicities inferred for some HVCs if their metal content proves to be low.Comment: 9 pages, 4 JPEG figures. PostScript figures available from author

    Fe XIII emission lines in active region spectra obtained with the Solar Extreme-Ultraviolet Research Telescope and Spectrograph

    Get PDF
    Recent fully relativistic calculations of radiative rates and electron impact excitation cross sections for Fe {\sc xiii} are used to generate emission-line ratios involving 3s2^{2}3p2^{2}--3s3p3^{3} and 3s2^{2}3p2^{2}--3s2^{2}3p3d transitions in the 170--225 \AA and 235--450 \AA wavelength ranges covered by the Solar Extreme-Ultraviolet Research Telescope and Spectrograph (SERTS). A comparison of these line ratios with SERTS active region observations from rocket flights in 1989 and 1995 reveals generally very good agreement between theory and experiment. Several new Fe {\sc xiii} emission features are identified, at wavelengths of 203.79, 259.94, 288.56 and 290.81 \AA. However, major discrepancies between theory and observation remain for several Fe {\sc xiii} transitions, as previously found by Landi (2002) and others, which cannot be explained by blending. Errors in the adopted atomic data appear to be the most likely explanation, in particular for transitions which have 3s2^{2}3p3d 1^{1}D2_{2} as their upper level. The most useful Fe {\sc xiii} electron density diagnostics in the SERTS spectral regions are assessed, in terms of the line pairs involved being (i) apparently free of atomic physics problems and blends, (ii) close in wavelength to reduce the effects of possible errors in the instrumental intensity calibration, and (iii) very sensitive to changes in Ne_{e} over the range 108^{8}--1011^{11} cm3^{-3}. It is concluded that the ratios which best satisfy these conditions are 200.03/202.04 and 203.17/202.04 for the 170--225 \AA wavelength region, and 348.18/320.80, 348.18/368.16, 359.64/348.18 and 359.83/368.16 for 235--450 \AA.Comment: 11 pages, 8 figures, 10 tables, MNRAS, in pres

    Emission lines of Fe X in active region spectra obtained with the Solar Extreme-ultraviolet Research Telescope and Spectrograph

    Get PDF
    Fully relativistic calculations of radiative rates and electron impact excitation cross sections for Fe X are used to derive theoretical emission-line ratios involving transitions in the 174-366 A wavelength range. A comparison of these with solar active region observations obtained during the 1989 and 1995 flights of the Solar Extreme-ultraviolet Research Telescope and Spectrograph (SERTS) reveals generally very good agreement between theory and experiment. Several Fe X emission features are detected for the first time in SERTS spectra, while the transition at 195.32 A is identified for the first time (to our knowledge) in an astronomical source. The most useful Fe X electron density diagnostic line ratios are assessed to be 175.27/174.53 and 175.27/177.24, which both involve lines close in wavelength and free from blends, vary by factors of 13 between Ne = 1E8 and 1E13 cm-3, and yet show little temperature sensitivity. Should these lines not be available, then the 257.25/345.74 ratio may be employed to determine Ne, although this requires an accurate evaluation of the instrument intensity calibration over a relatively large wavelength range. However, if the weak 324.73 A line of Fe X is reliably detected, the use of 324.73/345.74 or 257.25/324.73 is recommended over 257.25/345.74.Comment: 11 pages, 10 figures, MNRAS in pres

    The Velocity Distribution of Solar Photospheric Magnetic Bright Points

    Get PDF
    We use high spatial resolution observations and numerical simulations to study the velocity distribution of solar photospheric magnetic bright points. The observations were obtained with the Rapid Oscillations in the Solar Atmosphere instrument at the Dunn Solar Telescope, while the numerical simulations were undertaken with the MURaM code for average magnetic fields of 200 G and 400 G. We implemented an automated bright point detection and tracking algorithm on the dataset, and studied the subsequent velocity characteristics of over 6000 structures, finding an average velocity of approximately 1 km/s, with maximum values of 7 km/s. Furthermore, merging magnetic bright points were found to have considerably higher velocities, and significantly longer lifetimes, than isolated structures. By implementing a new and novel technique, we were able to estimate the background magnetic flux of our observational data, which is consistent with a field strength of 400 G.Comment: Accepted for publication in ApJL, 12 pages, 2 figure
    corecore