722 research outputs found

    Pollen from adobe brick

    Get PDF
    ABSTRACT.-Pollen from adobe bricks of the historic Brockman house of Tucson, Arizona, provides clues to the construction history of the building. Seventeen pollen samples were obtained from two separate walls and the mortar joining the bricks of one wall. The chenoam pollen type is dominant in all samples, and its proportion and concentration are signifi· cantly different between the two walls as indicated by chi square contingency tests. Similar differences are seen in high spine Compositae, Ambrosia type, Gramineae, Leguminosae, Pinus and in the AP:NAP ratio. Salsola type pollen was differentiated from other cheno·am pollen in this study. It was present in all adobe brick but it was rare or absent in the clay rich mortar. The variability among three samples from a single adobe brick is not statistically significant. Chi square contingency tests indicate similarity between modern soil (S2) and the adobe of wall I. The adobe of wall II was distinctly different from the modem soil. Chi square contingency tests also indicate similarity in pollen content of mortar and wall n\ and significant differences between pollen content of mortar and wall I. Pollen content in~e adobe brick can be interpreted as indicating two building phases for the house. Historic\.records indicate the earliest construction postdated 1901. Therefore, Salsola invasion into :the area must predate 1901 based on this pollen evidence

    The skyrmion-bubble transition in a ferromagnetic thin film

    Full text link
    Magnetic skyrmions and bubbles, observed in ferromagnetic thin films with perpendicular magnetic anisotropy, are topological solitons which differ by their characteristic size and the balance in the energies at the origin of their stabilisation. However, these two spin textures have the same topology and a continuous transformation between them is allowed. In the present work, we derive an analytical model to explore the skyrmion-bubble transition. We evidence a region in the parameter space where both topological soliton solutions coexist and close to which transformations between skyrmion and bubbles are observed as a function of the magnetic field. Above a critical point, at which the energy barrier separating both solutions vanishes, only one topological soliton solution remains, which size can be continuously tuned from micrometer to nanometer with applied magnetic field

    The effect of an external magnetic field on the determination of E1M1 two-photon decay rates in Be-like ions

    Full text link
    In this work we report on ab initio theoretical results for the magnetic field induced 2s2p ^3P_0 - 2s^2 ^1S_0 E1 transition for ions in the beryllium isoelectronic sequence between Z=5 and 92. It has been proposed that the rate of the E1M1 two-photon transition 2s2p ^3P_0 - 2s^2 ^1S_0 can be extracted from the lifetime of the ^3P_0 state in Be-like ions with zero nuclear spin by employing resonant recombination in a storage-ring. This experimental approach involves a perturbing external magnetic field. The effect of this field needs to be evaluated in order to properly extract the two-photon rate from the measured decay curves. The magnetic field induced transition rates are carefully evaluated and it is shown that, with a typical storage-ring field strength, it is dominant or of the same order as the E1M1 rate for low- and mid-Z ions. Results for several field strengths and ions are presented and we also give a simple Z-dependent formula for the rate. We estimate the uncertainties of our model to be within 5% for low- and mid-Z ions, and slightly larger for more highly charged ions. Furthermore we evaluate the importance of including both perturber states, ^3P_1 and ^1P_1, and it is shown that excluding the influence of the ^1P_1 perturber overestimates the rate by up to 26% for the mid-Z ions.Comment: 21 pages, 5 figure

    A monoclonal antibody that blocks the activity of a neurite regeneration-promoting factor: studies on the binding site and its localization in vivo

    Get PDF
    Work from several laboratories has identified a proteoglycan complex secreted by a variety of non-neuronal cells that can promote neurite regeneration when applied to the surface of culture dishes. Using a novel immunization protocol, a monoclonal antibody (INO) was produced that blocks the activity of this outgrowth-promoting factor (Matthew, W. D., and P. H. Patterson, 1983, Cold Spring Harbor Symp. Quant. Biol. 48:625-631). We have used the antibody to analyze the components of the active site and to localize the complex in vivo. INO binding is lost when the complex is dissociated; if its components are selectively reassociated, INO binds only to a complex containing two different molecular weight species. These are likely to be laminin and heparan sulfate proteoglycan, respectively. On frozen sections of adult rat tissues, INO binding is present on the surfaces of glial cells of the peripheral, but not the central, nervous system. INO also binds to the basement membrane surrounding cardiac and skeletal muscle cells, and binding to the latter greatly increases after denervation. In the adrenal gland and kidney, INO selectively reacts with areas rich in basement membranes, staining a subset of structures that are immunoreactive for both laminin and heparan sulfate proteoglycan. In general, the outgrowth-blocking antibody binds to areas known to promote axonal regeneration and is absent from areas known to lack this ability. This suggests that this complex, which is active in culture, may be the physiological substrate supporting nerve regeneration in vivo

    Absolute rate coefficients for photorecombination and electron-impact ionization of magnesium-like iron ions from measurements at a heavy-ion storage ring

    Full text link
    Rate coefficients for photorecombination (PR) and cross sections for electron-impact ionization (EII) of Fe14+^{14+} forming Fe13+^{13+} and Fe15+^{15+}, respectively, have been measured by employing the electron-ion merged-beams technique at a heavy-ion storage ring. Rate coefficients for PR and EII of Fe14+^{14+} ions in a plasma are derived from the experimental measurements. Simple parametrizations of the experimentally derived plasma rate coefficients are provided for use in the modeling of photoionized and collisionally ionized plasmas. In the temperature ranges where Fe14+^{14+} is expected to form in such plasmas the latest theoretical rate coefficients of Altun et al. [Astron. Astrophys. 474, 1051 (2007)] for PR and of Dere [Astron. Astrophys. 466, 771 (2007)] for EII agree with the experimental results to within the experimental uncertainties. Common features in the PR and EII resonance structures are identified and discussed.Comment: 12 pages, 6 figures, 3 tables, submitted for publication to Physical Review
    • …
    corecore