6 research outputs found

    Competition mechanisms of native and exotic tree species

    Get PDF
    Der Anteil an nicht-einheimischen Pflanzenarten (Neophyten), die durch menschlichen Einfluss in neue Gebiete eingebracht worden sind, hat in den letzten zwei Jahrhunderten deutlich zugenommen. Weltweit gefĂ€hrdet die Invasion von Neophyten betrĂ€chtlich die einheimische BiodiversitĂ€t und Ökosystemfunktionen. Verschiedene biologische Eigenschaften (z.B. hohe Zuwachsrate und schnelle Vermehrung) fĂŒhren zu einer besseren KonkurrenzfĂ€higkeit von invasiven Arten und verursachen VerĂ€nderungen in der natĂŒrlichen Artzusammensetzung. Eine genauere Erfassung der Eigenschaften, die Neophyten zu starken Konkurrenten machen, könnte dabei helfen pflanzliche Invasionen besser zu verstehen und zukĂŒnftig effektiver zu steuern. Topfversuche ermöglichen die Untersuchung von Pflanzeninteraktionen unter kontrollierten Bedingungen ohne den schwer kalkulierbaren Einfluss heterogener Umweltfaktoren. Allerdings fĂŒhren die Langlebigkeit und die grĂ¶ĂŸeren Dimensionen von Baumindividuen zu mehr Problemen in Topfversuchen im Vergleich zur Untersuchung krautiger Pflanzen. Aus diesem Grund wurde im Rahmen eines Reviews Literatur ausgewertet, um einen Überblick ĂŒber die praktische DurchfĂŒhrung von Topfversuchen, die sich ausschließlich mit Baumarten beschĂ€ftigen, zu geben. Es ist offensichtlich, dass der Vorteil von Topfversuchen zugleich auch einen Nachteil darstellt: Aufgrund der kontrollierten Bedingungen sind Topfversuche in ihrer Eignung natĂŒrliche Gegebenheiten zu imitieren immer eingeschrĂ€nkt. Die ZuverlĂ€ssigkeit von Topfversuchen bei der Vorhersage des Baumwachstums unter natĂŒrlichen Bedingungen ist daher problematisch. Eine Möglichkeit um die Übertragbarkeit von Topfversuchen zu verbessern, könnte die DurchfĂŒhrung zusĂ€tzlicher Felduntersuchungen sein. In einem Topfversuch wurden die, durch Unterschiede in der Wuchsrate, Biomasseproduktion und Biomasseverteilung bedingten, Konkurrenzmechanismen von zwei einheimischen (Quercus robur L., Carpinus betulus L.) und zwei nicht-einheimischen Baumarten untersucht (Prunus serotina Ehrh., Robinia pseudoacacia L.). EinjĂ€hrige Jungpflanzen wurden verschiedenen intra- und interspezifischen Konkurrenzbedingungen ausgesetzt, mit oder ohne den Einfluss von Wurzelkonkurrenz. Um die Konkurrenzmechanismen genauer zu bestimmen, wurde zwischen Wurzel- und Sprosskonkurrenz unterschieden, indem entweder ober- oder unterirdische PlastiktrennwĂ€nde in die Töpfe integriert wurden. Es wurde angenommen, dass die Gesamtbiomasseproduktion der Neophyten im Vergleich zur Biomasseproduktion der einheimischen Baumarten signifikant höher ist und dies zu einer Verringerung der Biomasse von Q. robur und C. betulus fĂŒhrt. Des Weiteren wurde der Einfluss der unterirdischen Konkurrenz auf das Wachstum und die Biomasseverteilung der einheimischen Arten gemĂ€ĂŸ der ‚balanced-growth hypothesis‘ untersucht. Unsere Ergebnisse bestĂ€tigen die Annahmen, dass die Biomasseproduktion der beiden Neophyten P. serotina und R. pseudoacacia signifikant höher ist und dies zu einem großen Konkurrenzvorteil und zu einer Biomassereduktion der beigemischten konkurrenzschwĂ€cheren einheimischen Arten fĂŒhrt. Der Konkurrenzdruck auf Q. robur und C. betulus wurde vor allem durch die Wurzelkonkurrenz der nicht-einheimischen Arten verursacht. Die Ausschaltung von unterirdischen Pflanzeninteraktionen durch TrennwĂ€nde fĂŒhrte somit zu einem Anstieg der Biomasseproduktion der beiden einheimischen Arten. Demzufolge scheint sogar ein begrenztes Wurzelvolumen bessere Wachstumsbedingungen zu bieten als direkter Wurzelkontakt mit invasiven Konkurrenten. In Übereinstimmung mit der ‚balanced-growth hypothesis‘ reagieren Q. robur und C. betulus auf die starke unterirdische Konkurrenz durch die Neophyten, indem sie mehr Biomasse in Richtung der Wurzeln transportieren. Die verstĂ€rkte Investition der Pflanzen in die Wurzeln geht vor allem zu Lasten von Blatt- und Astbiomasse. Außerdem hat sich gezeigt, dass Artenmischungen aus einheimischen und nicht-einheimischen BĂ€umen mehr Biomasse produzieren, als man anhand des Wachstums dieser Arten in Monokulturen erwartet hĂ€tte. Im Vergleich zu Monokulturen oder Mischungen beider Neophyten war der Konkurrenzdruck fĂŒr P. serotina und R. pseudoacacia in Mischungen mit den weniger produktiven einheimischen Baumarten geringer. Bei Betrachtung der beiden nicht-einheimischen Arten wird deutlich, dass P. serotina signifikant mehr Biomasse produziert. Trotzdem hat R. pseudoacacia aufgrund der starken Wurzelkonkurrenz einen negativen Einfluss auf die Biomasseproduktion von P. serotina. Wachsen die beiden konkurrenzstarken Neophyten zusammen in einem Topf, produzieren sie weniger Biomasse als in den entsprechenden Monokulturen. Es gibt Anzeichen dafĂŒr, dass die starke KonkurrenzfĂ€higkeit der invasiven Neophyten oftmals zu Lasten ihrer Stresstoleranz geht. Damit einhergehend zeigten die beiden nicht-einheimischen Arten im Topfversuch eine höhere MortalitĂ€tsrate: Vor allem P. serotina scheint zudem empfindlich gegenĂŒber Schatten, Trockenheit und Überflutung zu sein. Möglicherweise könnte diese Schwachstelle der Neophyten genutzt werden, um eine weitere Ausbreitung einzudĂ€mmen

    Biomass functions for the two alien tree species Prunus serotina Ehrh. and Robinia pseudoacacia L. in floodplain forests of Northern Italy

    Get PDF
    As one cause for biodiversity loss, invasive alien species are a worldwide threat. In forests, however, invasive tree species can also have an enormous biomass potential which can be harvested while taking measures against the species. Allometric equations help estimating the biomass but are often only available for the native range of the species. This lack on information complicates the management of invaded stands, and the equations presented here should help fill this gap. The above-ground biomass for single trees of black cherry (Prunus serotina Ehrh.) and black locust (Robinia pseudoacacia L.) in Ticino/Italy was estimated with differing explanatory variables as total, stem, crown, and leaf biomass. Regression equations of P. serotina were compared with equations from North America. The methods to derive biomass estimates from fresh weight and volumetric measurements in combination with wood densities were critically examined. The biomass could be estimated well by using "diameter" as explanatory variable. The productivity of P. serotina was lower here compared to its range of origin. Biomass estimates from volumetric measurements combined with the truncated cone formula have lead to systematic overestimations. Also the use of volumetric measurements combined with wood density measurements has overestimated comparable estimates from fresh weight measurements. peerReviewe

    Species-specific and generic biomass equations for seedlings and saplings of European tree species

    No full text
    Biomass equations are a helpful tool to estimate the tree and stand biomass production and standing stock. Such estimations are of great interest for science but also of great importance for global reports on the carbon cycle and the global climate system. Even though there are various collections and generic meta-analyses available with biomass equations for mature trees, reports on biomass equations for juvenile trees (seedlings and saplings) are mainly missing. Against the background of an increasing amount of reforestation and afforestation projects and forests in young successional stages, such equations are required. In this study we have collected data from various studies on the aboveground woody biomass of 19 common tree species growing in Europe. The aim of this paper was to calculate species-specific biomass equations for the aboveground woody biomass of single trees in dependence of root-collar-diameter (RCD), height (H) and the combination of the two (RCD2 H). Next to calculating species-specific biomass equations for the species available in the dataset, we also calculated generic biomass equations for all broadleaved species and all conifer species. The biomass equations should be a contribution to the pool of published biomass equations, whereas the novelty is here that the equations were exclusively derived for young trees
    corecore