514 research outputs found
Parvovirus B19 and Human Parvovirus 4 Encode Similar Proteins in a Reading Frame Overlapping the VP1 Capsid Gene
Viruses frequently contain overlapping genes, which encode functionally unrelated proteins from the same DNA or RNA region but in different reading frames. Yet, overlapping genes are often overlooked during genome annotation, in particular in DNA viruses. Here we looked for the presence of overlapping genes likely to encode a functional protein in human parvovirus B19 (genus Erythroparvovirus), using an experimentally validated software, Synplot2. Synplot2 detected an open reading frame, X, conserved in all erythroparvoviruses, which overlaps the VP1 capsid gene and is under highly significant selection pressure. In a related virus, human parvovirus 4 (genus Tetraparvovirus), Synplot2 also detected an open reading frame under highly significant selection pressure, ARF1, which overlaps the VP1 gene and is conserved in all tetraparvoviruses. These findings provide compelling evidence that the X and ARF1 proteins must be expressed and functional. X and ARF1 have the exact same location (they overlap the region of the VP1 gene encoding the phospholipase A2 domain), are both in the same frame (+1) with respect to the VP1 frame, and encode proteins with similar predicted properties, including a central transmembrane region. Further studies will be needed to determine whether they have a common origin and similar function. X and ARF1 are probably translated either from a polycistronic mRNA by a non-canonical mechanism, or from an unmapped monocistronic mRNA. Finally, we also discovered proteins predicted to be expressed from a frame overlapping VP1 in other species related to parvovirus B19: porcine parvovirus 2 (Z protein) and bovine parvovirus 3 (X-like protein).Peer Reviewe
Detecting Remote Sequence Homology in Disordered Proteins: Discovery of Conserved Motifs in the N-Termini of Mononegavirales phosphoproteins
Paramyxovirinae are a large group of viruses that includes measles virus and parainfluenza viruses. The viral Phosphoprotein (P) plays a central role in viral replication. It is composed of a highly variable, disordered N-terminus and a conserved C-terminus. A second viral protein alternatively expressed, the V protein, also contains the N-terminus of P, fused to a zinc finger. We suspected that, despite their high variability, the N-termini of P/V might all be homologous; however, using standard approaches, we could previously identify sequence conservation only in some Paramyxovirinae. We now compared the N-termini using sensitive sequence similarity search programs, able to detect residual similarities unnoticeable by conventional approaches. We discovered that all Paramyxovirinae share a short sequence motif in their first 40 amino acids, which we called soyuz1. Despite its short length (11–16aa), several arguments allow us to conclude that soyuz1 probably evolved by homologous descent, unlike linear motifs. Conservation across such evolutionary distances suggests that soyuz1 plays a crucial role and experimental data suggest that it binds the viral nucleoprotein to prevent its illegitimate self-assembly. In some Paramyxovirinae, the N-terminus of P/V contains a second motif, soyuz2, which might play a role in blocking interferon signaling. Finally, we discovered that the P of related Mononegavirales contain similarly overlooked motifs in their N-termini, and that their C-termini share a previously unnoticed structural similarity suggesting a common origin. Our results suggest several testable hypotheses regarding the replication of Mononegavirales and suggest that disordered regions with little overall sequence similarity, common in viral and eukaryotic proteins, might contain currently overlooked motifs (intermediate in length between linear motifs and disordered domains) that could be detected simply by comparing orthologous proteins
Sequence analysis reveals a conserved extension in the capping enzyme of the alphavirus supergroup, and a homologous domain in nodaviruses
Background: Members of the alphavirus supergroup include human pathogens such as chikungunya virus, hepatitis E virus and rubella virus. They encode a capping enzyme with methyltransferase-guanylyltransferase (MTase-GTase) activity, which is an attractive drug target owing to its unique mechanism. However, its experimental study has proven very difficult. Results: We examined over 50 genera of viruses by sequence analyses. Earlier studies showed that the MTase-GTase contains a "Core" region conserved in sequence. We show that it is followed by a long extension, which we termed "Iceberg" region, whose secondary structure, but not sequence, is strikingly conserved throughout the alphavirus supergroup. Sequence analyses strongly suggest that the minimal capping domain corresponds to the Core and Iceberg regions combined, which is supported by earlier experimental data. The Iceberg region contains all known membrane association sites that contribute to the assembly of viral replication factories. We predict that it may also contain an overlooked, widely conserved membrane-binding amphipathic helix. Unexpectedly, we detected a sequence homolog of the alphavirus MTase-GTase in taxa related to nodaviruses and to chronic bee paralysis virus. The presence of a capping enzyme in nodaviruses is biologically consistent, since they have capped genomes but replicate in the cytoplasm, where no cellular capping enzyme is present. The putative MTase-GTase domain of nodaviruses also contains membrane-binding sites that may drive the assembly of viral replication factories, revealing an unsuspected parallel with the alphavirus supergroup. Conclusions: Our work will guide the functional analysis of the alphaviral MTase-GTase and the production of domains for structure determination. The identification of a homologous domain in a simple model system, nodaviruses, which replicate in numerous eukaryotic cell systems (yeast, flies, worms, mammals, and plants), can further help crack the function and structure of the enzyme.Peer reviewe
Recommended from our members
Four erroneous beliefs thwarting more trustworthy research.
A range of problems currently undermines public trust in biomedical research. We discuss four erroneous beliefs that may prevent the biomedical research community from recognizing the need to focus on deserving this trust, and thus which act as powerful barriers to necessary improvements in the research process
IT-gestütztes Compliance Management für Geschäftsprozesse
Die Einhaltung regulatorischer Anforderungen und interner Richtlinien ist zunehmend kritisch für den Unternehmenserfolg geworden. In dieser Arbeit wird ein Ansatz vorgestellt, der eine effiziente Compliance-Prüfung von Geschäftsprozessen basierend auf den in standardisierten Ereignisprotokollen aufgezeichneten Ereignisdaten ermöglicht. Neben einer Referenzimplementierung des Ansatzes werden eine Erweiterung für ein Geschäftsprozessmanagementwerkzeug sowie ein webbasiertes Dashboard entwickelt
A novel emaravirus comprising five RNA segments is associated with ringspot disease in oak
We report the complete nucleotide sequence of the genome of a novel virus in ringspot-diseased common oak (Quercus robur L.). The newly identified pathogen is associated with leaf symptoms such as mottle, chlorotic spots and ringspots on diseased trees. High-throughput sequencing (HTS, Illumina RNASeq) was used to explore the virome of a ringspot-diseased oak that had chlorotic ringspots of suspected viral origin on leaves for several years. Bioinformatic analysis of the HTS dataset followed by RT-PCR enabled us to determine complete sequences of four RNA genome segments of a novel virus. These sequences showed high similarity to members of the genus Emaravirus, which includes segmented negative-stranded RNA viruses of economic importance. To verify the ends of each RNA, we conducted rapid amplification of cDNA ends (RACE). We identified an additional genome segment (RNA 5) by RT-PCR using a genus-specific primer (PDAP213) to the conserved 3´ and 5´termini in order to amplify full-length genome segments. RNA 5 encodes a 21-kDa protein that is homologous to the silencing suppressor P8 of High Plains wheat mosaic virus. The five viral RNAs were consistently detected by RT-PCR in ringspot-diseased oaks in Germany, Sweden, and Norway. We conclude that the virus represents a new member of the genus Emaravirus affecting oaks in Germany and in Scandinavia, and we propose the name “common oak ringspot-associated emaravirus” (CORaV).FAZIT Stiftung
http://dx.doi.org/10.13039/501100003099Deutsche Forschungsgemeinschaft
http://dx.doi.org/10.13039/501100001659European Cooperation in Science and Technology
http://dx.doi.org/10.13039/501100000921Projekt DEALPeer Reviewe
Sequence analysis reveals a conserved extension in the capping enzyme of the alphavirus supergroup, and a homologous domain in nodaviruses
Abstract
Background
Members of the alphavirus supergroup include human pathogens such as chikungunya virus, hepatitis E virus and rubella virus. They encode a capping enzyme with methyltransferase-guanylyltransferase (MTase-GTase) activity, which is an attractive drug target owing to its unique mechanism. However, its experimental study has proven very difficult.
Results
We examined over 50 genera of viruses by sequence analyses. Earlier studies showed that the MTase-GTase contains a “Core” region conserved in sequence. We show that it is followed by a long extension, which we termed “Iceberg” region, whose secondary structure, but not sequence, is strikingly conserved throughout the alphavirus supergroup. Sequence analyses strongly suggest that the minimal capping domain corresponds to the Core and Iceberg regions combined, which is supported by earlier experimental data. The Iceberg region contains all known membrane association sites that contribute to the assembly of viral replication factories. We predict that it may also contain an overlooked, widely conserved membrane-binding amphipathic helix. Unexpectedly, we detected a sequence homolog of the alphavirus MTase-GTase in taxa related to nodaviruses and to chronic bee paralysis virus. The presence of a capping enzyme in nodaviruses is biologically consistent, since they have capped genomes but replicate in the cytoplasm, where no cellular capping enzyme is present. The putative MTase-GTase domain of nodaviruses also contains membrane-binding sites that may drive the assembly of viral replication factories, revealing an unsuspected parallel with the alphavirus supergroup.
Conclusions
Our work will guide the functional analysis of the alphaviral MTase-GTase and the production of domains for structure determination. The identification of a homologous domain in a simple model system, nodaviruses, which replicate in numerous eukaryotic cell systems (yeast, flies, worms, mammals, and plants), can further help crack the function and structure of the enzyme.
Reviewers
This article was reviewed by Valerian Dolja, Eugene Koonin and Sebastian Maurer-Stroh
Bioinformatic and mutational analysis of ophiovirus movement proteins, belonging to the 30K superfamily
Ophioviridae is a family of segmented, negative-sense, single-stranded RNA plant viruses. We showed that their cell-to-cell movement protein (MP) is an isolated member of the 30K MP superfamily with a unique structural organization. All 30K MPs share a core domain that contains a nearly-invariant signature aspartate. We examined its role in the MP of Citrus psorosis virus (CPsV) and Mirafiori lettuce big-vein virus (MiLBVV). Alanine substitution of this aspartate prevented plasmodesmata accumulation of MPMiLBVV, while MPCPsV was not affected. The capacity of ophiovirus MPs to increase the plasmodesmata size exclusion limit and non-cell autonomous protein feature was abolished in both mutants. To investigate the role of the signature aspartate in cell-to-cell movement, we constructed a new movement-deficient Tobacco mosaic virus vector used for trans-complementation assays. We showed that both ophiovirus MP mutants lack the cell-to-cell movement capacity, confirming that this signature aspartate is essential for viral cell-to-cell movement.Instituto de Biotecnologia y Biologia Molecula
Powerful sequence similarity search methods and in-depth manual analyses can identify remote homologs in many apparently "orphan" viral proteins
The genome sequences of new viruses often contain many "orphan" or "taxon-specific" proteins apparently lacking homologs. However, because viral proteins evolve very fast, commonly used sequence similarity detection methods such as BLAST may overlook homologs. We analyzed a data set of proteins from RNA viruses characterized as "genus specific" by BLAST. More powerful methods developed recently, such as HHblits or HHpred (available through web-based, user-friendly interfaces), could detect distant homologs of a quarter of these proteins, suggesting that these methods should be used to annotate viral genomes. In-depth manual analyses of a subset of the remaining sequences, guided by contextual information such as taxonomy, gene order, or domain cooccurrence, identified distant homologs of another third. Thus, a combination of powerful automated methods and manual analyses can uncover distant homologs of many proteins thought to be orphans. We expect these methodological results to be also applicable to cellular organisms, since they generally evolve much more slowly than RNA viruses. As an application, we reanalyzed the genome of a bee pathogen, Chronic bee paralysis virus (CBPV). We could identify homologs of most of its proteins thought to be orphans; in each case, identifying homologs provided functional clues. We discovered that CBPV encodes a domain homologous to the Alphavirus methyltransferase-guanylyltransferase; a putative membrane protein, SP24, with homologs in unrelated insect viruses and insect-transmitted plant viruses having different morphologies (cileviruses, higreviruses, blunerviruses, negeviruses); and a putative virion glycoprotein, ORF2, also found in negeviruses. SP24 and ORF2 are probably major structural components of the virionsd
Recommended from our members
Phase Ib study of the combination of pexidartinib (PLX3397), a CSF-1R inhibitor, and paclitaxel in patients with advanced solid tumors.
Purpose:To evaluate the safety, recommended phase II dose (RP2D) and efficacy of pexidartinib, a colony stimulating factor receptor 1 (CSF-1R) inhibitor, in combination with weekly paclitaxel in patients with advanced solid tumors. Patients and Methods:In part 1 of this phase Ib study, 24 patients with advanced solid tumors received escalating doses of pexidartinib with weekly paclitaxel (80 mg/m2). Pexidartinib was administered at 600 mg/day in cohort 1. For subsequent cohorts, the dose was increased by ⩽50% using a standard 3+3 design. In part 2, 30 patients with metastatic solid tumors were enrolled to examine safety, tolerability and efficacy of the RP2D. Pharmacokinetics and biomarkers were also assessed. Results:A total of 51 patients reported ≥1 adverse event(s) (AEs) that were at least possibly related to either study drug. Grade 3-4 AEs, including anemia (26%), neutropenia (22%), lymphopenia (19%), fatigue (15%), and hypertension (11%), were recorded in 38 patients (70%). In part 1, no maximum tolerated dose was achieved and 1600 mg/day was determined to be the RP2D. Of 38 patients evaluable for efficacy, 1 (3%) had complete response, 5 (13%) partial response, 13 (34%) stable disease, and 17 (45%) progressive disease. No drug-drug interactions were found. Plasma CSF-1 levels increased 1.6- to 53-fold, and CD14dim/CD16+ monocyte levels decreased by 57-100%. Conclusions:The combination of pexidartinib and paclitaxel was generally well tolerated. RP2D for pexidartinib was 1600 mg/day. Pexidartinib blocked CSF-1R signaling, indicating potential for mitigating macrophage tumor infiltration
- …