828 research outputs found
RTN in GexSe1-x OTS Selector Devices
Random telegraph noise (RTN) signals in GexSe1-x ovonic threshold switching (OTS) selector have been analyzed in this work, both before and after the first-fire (FF) operation and at on- and off-states. It is observed that RTN appears after the FF, and its absolute amplitude at the off-state is small and negligible in comparison with the RTN signals in RRAM devices. At the on-state, large RTN signals are observed, which can either partially or fully block the conduction path, supporting that a conductive filament is formed or activated by FF and then modulated during switching. Statistical analysis reveals that the relative RTN amplitude at on-state in GexSe1-x OTS selector is smaller than or equivalent to those in RRAM devices
The over-reset phenomenon in Ta2O5 RRAM device investigated by the RTN-based defect probing technique
IEEE Despite the tremendous efforts in the past decade devoted to the development of filamentary resistive-switching devices (RRAM), there is still a lack of in-depth understanding of its over-reset phenomenon. At higher reset stop voltages that exceed a certain threshold, the resistance at high resistance state reduces, leading to an irrecoverable window reduction. The over-reset phenomenon limits the maximum resistance window that can be achieved by using a higher Vreset, which also degrades its potential in applications such as multi-level memory and neuromorphic synapses. In this work, the over-reset is investigated by cyclic reset operations with incremental stop voltages, and is explained by defect generation in the filament constriction region of Ta2O5 RRAM devices. This is supported by the statistical spatial defects profile obtained from the random telegraph noise based defect probing technique. The impact of forming compliance current on the over-reset is also evaluated
Doped GeSe materials for selector applications
We report on the thermal and electrical performance of nitrogen (N) and carbon (C) doped GeSe thin films for selector applications. Doping of GeSe successfully improved its thermal stability to 450 degrees C. N doping led to a decrease in the off-state leakage and an increase in threshold voltage (V-th), while C doping led to an increase in leakage and reduced V-th. Hence, we show an effective method to tune the electrical parameters of GeSe selectors by using N and C as dopants
Non-filamentary (VMCO) memory : a two- and three-dimensional study on switching and failure modes
In this work, for the first time, a set of two-and three-dimensional (3D) analysis techniques are combined to clarify the nature of resistive switching (RS) in state-of-the-art TiO2-based vacancy modulated conductive oxide (VMCO) memory. (1) A non-filamentary switching mechanism is observed. (2) The role of oxygen incorporation and motion in the TiO2 is demonstrated. (3) The oxygen profile inside scaled cells is measured and a RS-model based on the modulation of oxygen inside the stack is proposed. In addition, we perform the tomographic analysis of fully-fabricated devices with Scalpel SPM, thus probing in 3D the entire stack and the contribution of TiO2 grain boundaries (GBs) to the switching operations. Finally, devices failed by breakdown (BD) during cycling are characterized, identifying the formation of parasitic filaments as root-cause of the failure
Impact of RTN on Pattern Recognition Accuracy of RRAM-based Synaptic Neural Network
Resistive switching memory devices can be categorized into either filamentary or non-filamentary ones depending on the switching mechanisms. Both types have been investigated as novel synaptic devices in hardware neural networks, but there is a lack of comparative study between them, especially in random telegraph noise (RTN) which could induce large resistance fluctuations. In this work, we analyze the amplitude and occurrence rate of RTN in both Ta2O5 filamentary and TiO2/a-Si (a-VMCO) non-filamentary RRAM devices and evaluate its impact on the pattern recognition accuracy of neural networks. It is revealed that the non-filamentary RRAM has a tighter RTN amplitude distribution and much lower RTN occurrence rate than its filamentary counterpart which leads to negligible RTN impact on recognition accuracy, making it a promising candidate in synaptic application
Dependence of switching probability on operation conditions in GexSe1-x ovonic threshold switching selectors
Ovonic threshold switching (OTS) selector is a promising candidate to suppress the sneak current paths in resistive switching memory (RRAM) arrays. Variations in the threshold voltage (Vth), and the hold voltage (Vhd) have been reported, but a quantitative analysis of the switching probability dependence on the OTS operation conditions is still missing. A novel characterization method is developed in this work, and the time-to-switch-on/off (ton/toff) at a constant VOTS is found following the Weibull distribution, based on which the dependence of switching probability on pulse bias and time can be extracted and extrapolated, and the switching probability can be ensured with appropriately chosen operation conditions. The difference between square and triangle switching pulses is also explained. This provides a practical guidance for predicting the switching probability under different operation conditions and for designing reliable one-selector-one-RRAM (1S1R) arrays
Impact of relaxation on the performance of GeSe true random number generator based on Ovonic threshold switching
Volatile Ovonic threshold switching (OTS) are promising not only as the selector in crossbar resistive switching memory arrays, but also as true random number generators (TRNG) by utilizing its probabilistic switching characteristics. However, investigation on the reliability of OTS-based TRNG is still lacking, which hinders its practical application. Previously, we found that switching probability is dependent on the pulse amplitude and width. In this work, we report that relaxation which happens during the time interval between pulses can cause switching probability drift. Optimizing the bit-generation waveform and modulating the pulse conditions could provide a practical solution, in addition to the impact of external bias and temperature. This work provides useful guidance for the
practical design and operation of OTS-based TRNGs
Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV
The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of βs = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pTβ₯20 GeV and pseudorapidities {pipe}Ξ·{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}Ξ·{pipe}<0. 8) for jets with 60β€pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2β€{pipe}Ξ·{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. Β© 2013 CERN for the benefit of the ATLAS collaboration
- β¦