317 research outputs found

    Diagnostic accuracy of mediastinal width measurement on posteroanterior and anteroposterior chest radiographs in the depiction of acute nontraumatic thoracic aortic dissection

    Get PDF
    We aimed to explore the diagnostic accuracy of various mediastinal measurements in determining acute nontraumatic thoracic aortic dissection with respect to posteroanterior (PA) and anteroposterior (AP) chest radiographs, which had received little attention so far. We retrospectively reviewed 100 patients (50 PA and 50 AP chest radiographs) with confirmed acute thoracic aortic dissection and 120 patients (60 PA and 60 AP chest radiographs) with confirmed normal aorta. Those who had prior history of trauma or aortic disease were excluded. The maximal mediastinal width (MW) and maximal left mediastinal width (LMW) were measured by two independent radiologists and the mediastinal width ratio (MWR) was calculated. Statistical analysis was then performed with independent sample t test. PA projection was significantly more accurate than AP projection, achieving higher sensitivity and specificity. LMW and MW were the most powerful parameters on PA and AP chest radiographs, respectively. The optimal cutoff levels were LMW = 4.95 cm (sensitivity, 90 %; specificity, 90 %) and MW = 7.45 cm (sensitivity, 90 %; specificity, 88.3 %) for PA projection and LMW = 5.45 cm (sensitivity, 76 %; specificity, 65 %) and MW = 8.65 cm (sensitivity, 72 %; specificity, 80 %) for AP projection. MWR was found less useful and less reliable. The use of LMW alone in PA film would allow more accurate prediction of aortic dissection. PA chest radiograph has a higher diagnostic accuracy when compared with AP chest radiograph, with negative PA chest radiograph showing less probability for aortic dissection. Lower threshold for proceeding to computed tomography aortogram is recommended however, especially in the elderly and patients with widened mediastinum on AP chest radiograph

    Exploring Barriers to Exercise among Adolescents at the Burlington Boys and Girls Club

    Get PDF
    Introduction: The Boys and Girls Club of Burlington (BGCB) is a non-profit that holds after-school activities for adolescents, including music, art, technology, and sports. The BGCB has struggled to encourage physical activity (PA) among many participants. We designed our study to identify deterrents to PA, as well as possible ways to improve participation.https://scholarworks.uvm.edu/comphp_gallery/1066/thumbnail.jp

    Key Parameters Requirements for Non‐Fullerene‐Based Organic Solar Cells with Power Conversion Efficiency >20%

    Get PDF
    The reported power conversion efficiencies (PCEs) of nonfullerene acceptor (NFA) based organic photovoltaics (OPVs) now exceed 14% and 17% for single‐junction and two‐terminal tandem cells, respectively. However, increasing the PCE further requires an improved understanding of the factors limiting the device efficiency. Here, the efficiency limits of single‐junction and two‐terminal tandem NFA‐based OPV cells are examined with the aid of a numerical device simulator that takes into account the optical properties of the active material(s), charge recombination effects, and the hole and electron mobilities in the active layer of the device. The simulations reveal that single‐junction NFA OPVs can potentially reach PCE values in excess of 18% with mobility values readily achievable in existing material systems. Furthermore, it is found that balanced electron and hole mobilities of >10−3 cm2 V−1 s−1 in combination with low nongeminate recombination rate constants of 10−12 cm3 s−1 could lead to PCE values in excess of 20% and 25% for single‐junction and two‐terminal tandem OPV cells, respectively. This analysis provides the first tangible description of the practical performance targets and useful design rules for single‐junction and tandem OPVs based on NFA materials, emphasizing the need for developing new material systems that combine these desired characteristics

    Mesorhizobium septentrionale sp nov and Mesorhizobium temperatum sp nov., isolated from Astragalus adsurgens growing in the northern regions of China

    Get PDF
    Ninety-five rhizobial strains isolated from Astragalus adsurgens growing in the northern regions of China were classified into three main groups, candidate species 1, 11 and 111, based on a polyphasic approach. Comparative analysis of full-length 16S rRNA gene sequences of representative strains showed that candidate species I and 11 were Mesorhizobium, while candidate species 111, which consisted of non-nodulating strains, was closely related to Agrobacterium tumefaciens. The phylogenetic relationships of the three candidate species and some related strains were also confirmed by the sequencing of glnA genes, which were used as an alternative chromosomal marker. The DNA-DNA relatedness was between 11.3 and 47-1 % among representative strains of candidate species I and 11 and the type strains of defined Mesorhizobium species. Candidate III had DNA relatedness of between 4(.)3 and 25(.)2 % with type strains of Agrobacterium tumefaciens and Agrobacterium rubi. Two novel species are proposed to accommodate candidate species I and 11, Mesorhizobium septentrionale sp. nov. (type strain, SIDW014(T) =CCBAU 11014(T) = HAMBI 2582(T)) and Mesorhizobium temperatum sp. nov. (type strain, SIDW018(T) = CCBAU 11018(T) =HAMBI 2583(T)), respectively. At least two distinct nodA sequences were identified among the strains. The numerically dominant nodA sequence type was most similar to that from the Mesorhizobium tianshanense type strain and was identified in strains belonging to the two novel species as well as other, as yet, undefined genome types. Host range studies indicate that the different nodA sequences correlate with different host ranges. Further comparative studies with the defined Agrobacterium species are needed to clarify the taxonomic identity of candidate species 111

    15.34% efficiency all-small-molecule organic solar cells with an improved fill factor enabled by a fullerene additive

    Get PDF
    Solution processed organic solar cells (OSCs) composed of all small molecules (ASM) are promising for production on an industrial scale owing to the properties of small molecules, such as well-defined chemical structures, high purity of materials, and outstanding repeatability from batch to batch synthesis. Remarkably, ASM OSCs with power conversion efficiency (PCE) beyond 13% were achieved by structure improvement of the electron donor and choosingY6as the electron acceptor. However, the fill factor (FF) is an obstacle that limits the further improvement of the PCE for these ASM OSCs. Herein, we focus on the FF improvement of recently reported ASM OSCs withBTR-Cl:Y6as the active layer by miscibility-induced active layer morphology optimization. The incorporation of fullerene derivatives, which have good miscibility with bothBTR-ClandY6, results in reduced bimolecular recombination and thus improved FF. In particular, whenca.5 wt% ofPC(71)BMwas added in the active layer, a FF of 77.11% was achieved without sacrificing the open circuit voltage (V-OC) and the short circuit current density (J(SC)), leading to a record PCE of 15.34% (certified at 14.7%) for ASM OSCs. We found that the optimized device showed comparable charge extraction, longer charge carrier lifetime, and slower bimolecular recombination rate compared with those of the control devices (w/o fullerene). Our results demonstrate that the miscibility driven regulation of active layer morphology by incorporation of a fullerene derivative delicately optimizes the active layer microstructures and improves the device performance, which brings vibrancy to OSC research

    Effects of Fluorination on Fused Ring Electron Acceptor for Active Layer Morphology, Exciton Dissociation, and Charge Recombination in Organic Solar Cells

    Get PDF
    Fluorination is one of the effective approaches to alter the organic semiconductor properties that impact the performance of the organic solar cells (OSCs). Positive effects of fluorination are also revealed in the application of fused ring electron acceptors (FREAs). However, in comparison with the efforts allocated to the material designs and power conversion efficiency enhancement, understanding on the excitons and charge carriers' behaviors in high-performing OSCs containing FREAs is limited. Herein, the impact of fluorine substituents on the active layer morphology, and therefore exciton dissociation, charge separation, and charge carriers' recombination processes are examined by fabricating OSCs with PTO2 as the donor and two FREAs, O-IDTT-IC and its fluorinated analogue O-IDTT-4FIC, as the acceptors. With the presence of O-IDTT-4FIC in the devices, it is found that the excitons dissociate more efficiently, and the activation energy required to split the excitons to free charge carriers is much lower; the charge carriers live longer and suffer less extent of trap-assisted recombination; the trap density is 1 order of magnitude lower than that of the nonfluorinated counterpart. Overall, these findings provide information about the complex impacts of FREA fluorination on efficiently performed OSCs

    The Swarm Initial Field Model for the 2014 geomagnetic field

    Get PDF
    Data from the first year of ESA's Swarm constellation mission are used to derive the Swarm Initial Field Model (SIFM), a new model of the Earth's magnetic field and its time variation. In addition to the conventional magnetic field observations provided by each of the three Swarm satellites, explicit advantage is taken of the constellation aspect by including east-west magnetic intensity gradient information from the lower satellite pair. Along-track differences in magnetic intensity provide further information concerning the north-south gradient. The SIFM static field shows excellent agreement (up to at least degree 60) with recent field models derived from CHAMP data, providing an initial validation of the quality of the Swarm magnetic measurements. Use of gradient data improves the determination of both the static field and its secular variation, with the mean misfit for east-west intensity differences between the lower satellite pair being only 0.12 nT
    corecore