51 research outputs found

    Distance Magic Graphs - a Survey

    Full text link
    Let <i>G = (V;E)</i> be a graph of order n. A bijection <i>f : V → {1, 2,...,n} </i>is called <i>a distance magic labeling </i>of G if there exists a positive integer k such that <i>Σ f(u) = k </i> for all <i>v ε V</i>, where <i>N(v)</i> is the open neighborhood of v. The constant k is called the magic constant of the labeling f. Any graph which admits <i>a distance magic labeling </i>is called a distance magic graph. In this paper we present a survey of existing results on distance magic graphs along with our recent results,open problems and conjectures.DOI : http://dx.doi.org/10.22342/jims.0.0.15.11-2

    Enhancing Microcomputer Edge Computing for Autonomous IoT Motion Control

    Get PDF
    Devices microprocessors, microcontrollers, and Field Programmable Gate Arrays (FPGA) play the core rule at the IoT edge level and it should be right provisioned. For proper controller performance, control algorithms should be implemented near the actuator eliminating the delay effects. In the IoT domain, this means to implement the mentioned algorithm at the edge level and prior data transmitting. The efficient IoT-enabled motion control can be obtained by considering two main factors; the first factor is from the actuator design point of view and the second factor is from the controller performance point of view. Therefore, in this article, the two mentioned factors are treated concerning the microprocessor rule and importance as a core for proper prototype design and as the main platform to implement the control algorithms. A comparison of controller performance indices for both prototypes is done using previously distributed motion control schemes and newly developed schemes after tuning the respective schemes gains in an optimal manner. The scheme with better behavior of both prototypes are selected for the IoT integration process, this scheme ensures optimal edge computing for the distributed motion control, making the implementation of all control computation take place at the IoT-edge level. As a result, the dynamic pipeline stages (DPS) based prototype gives better controller performance indices for most strategies, less power consumption, and optimally utilized resources encouraging the use of the microprocessors with reconfigurable components at the IoT-edge level

    Molecular characterization of extended spectrum β -lactamases enterobacteriaceae causing lower urinary tract infection among pediatric population.

    Get PDF
    The β-lactam antibiotics have traditionally been the main treatment of Enterobacteriaceae infections, nonetheless, the emergence of species producing β- Lactamases has rendered this class of antibiotics largely ineffective. There are no published data on etiology of urinary tract infections (UTI) and antimicrobial resistance profile of uropathogens among children in Qatar. The aim of this study is to determine the phenotypic and genotypic profiles of antimicrobial resistant Enterobacteriaceae among children with UTI in Qatar. Bacteria were isolated from 727 urine positive cultures, collected from children with UTI between February and June 2017 at the Pediatric Emergency Center, Doha, Qatar. Isolated bacteria were tested for antibiotic susceptibility against sixteen clinically relevant antibiotics using phoenix and Double Disc Synergy Test (DDST) for confirmation of extended-spectrum beta-lactamase (ESBL) production. Existence of genes encoding ESBL production were identified using polymerase chain reaction (PCR). Statistical analysis was done using non-parametric Kappa statistics, Pearson chi-square test and Jacquard's coefficient. 201 (31.7%) of samples were confirmed as Extended Spectrum β -Lactamases (ESBL) Producing Enterobacteriaceae. The most dominant pathogen was 166 (83%) followed by 22 (11%). Resistance was mostly encoded by CTX-M (59%) genes, primarily CTX-MG1 (89.2%) followed by CTX-MG9 (7.7%). 37% of isolated bacteria were harboring multiple genes (2 genes or more). isolates were categorized into 11 clusters, while were grouped into five clonal clusters according to the presence and absence of seven genes namely TEM, SHV, CTX-MG1, CTX-MG2, CTX-MG8 CTX-MG9 CTX-MG25. Our data indicates an escalated problem of ESBL in pediatrics with UTI, which mandates implementation of regulatory programs to reduce the spread of ESBL producing Enterobacteriaceae in the community. The use of cephalosporins, aminoglycosides (gentamicin) and trimethoprim/sulfamethoxazole is compromised in Qatar among pediatric population with UTI, leaving carbapenems and amikacin as the therapeutic option for severe infections caused by ESBL producers

    Leveraging technology-driven strategies to untangle omics big data: circumventing roadblocks in clinical facets of oral cancer

    Get PDF
    Oral cancer is one of the 19most rapidly progressing cancers associated with significant mortality, owing to its extreme degree of invasiveness and aggressive inclination. The early occurrences of this cancer can be clinically deceiving leading to a poor overall survival rate. The primary concerns from a clinical perspective include delayed diagnosis, rapid disease progression, resistance to various chemotherapeutic regimens, and aggressive metastasis, which collectively pose a substantial threat to prognosis. Conventional clinical practices observed since antiquity no longer offer the best possible options to circumvent these roadblocks. The world of current cancer research has been revolutionized with the advent of state-of-the-art technology-driven strategies that offer a ray of hope in confronting said challenges by highlighting the crucial underlying molecular mechanisms and drivers. In recent years, bioinformatics and Machine Learning (ML) techniques have enhanced the possibility of early detection, evaluation of prognosis, and individualization of therapy. This review elaborates on the application of the aforesaid techniques in unraveling potential hints from omics big data to address the complexities existing in various clinical facets of oral cancer. The first section demonstrates the utilization of omics data and ML to disentangle the impediments related to diagnosis. This includes the application of technology-based strategies to optimize early detection, classification, and staging via uncovering biomarkers and molecular signatures. Furthermore, breakthrough concepts such as salivaomics-driven non-invasive biomarker discovery and omics-complemented surgical interventions are articulated in detail. In the following part, the identification of novel disease-specific targets alongside potential therapeutic agents to confront oral cancer via omics-based methodologies is presented. Additionally, a special emphasis is placed on drug resistance, precision medicine, and drug repurposing. In the final section, we discuss the research approaches oriented toward unveiling the prognostic biomarkers and constructing prediction models to capture the metastatic potential of the tumors. Overall, we intend to provide a bird’s eye view of the various omics, bioinformatics, and ML approaches currently being used in oral cancer research through relevant case studies

    Influence of Ficoll on urea induced denaturation of fibrinogen

    No full text
    Ficoll is a neutral, highly branched polymer used as a molecular crowder in the study of proteins. Ficoll is also part of Ficoll-Paque used in biology laboratories to separate blood to its components (erythrocytes, leukocytes etc.,). Role of Ficoll in the urea induced denaturation of protein Fibrinogen (Fg) has been analyzed using fluorescence, circular dichroism, molecular docking and interfacial studies. Fluorescence studies show that Ficoll prevents quenching of Fg in the presence of urea. From the circular dichroism spectra, Fg shows conformational transition to random coil with urea of 6 M concentration. Ficoll helps to shift this denaturation concentration to 8 M and thus constraints by shielding Fg during the process. Molecular docking studies indicate that Ficoll interacts favorably with the protein than urea. The surface tension and shear viscosity analysis shows clearly that the protein is shielded by Ficoll

    Photovoltaic Based Three-Phase Three-Wire DSTATCOM to improve Power Quality

    No full text
    446-453Three-phase three-wire Distribution Static Compensator (DSTATCOM) with Photovoltaic (PV) array or battery operated DC-DC boost converter is proposed in this paper. The proposed DSTATCOM consists of a three-leg Voltage Source Converter (VSC) with a DC bus capacitor and it provides continuous reactive power compensation, source harmonic reduction and load compensation throughout the day. With the help of PV array or battery, which is connected to the dc link of VSC via the DC-DC boost converter is used to maintain the desired voltage to the dc bus capacitor for continuous compensation to the load. The IcosФ controlling algorithm is proposed for three-phase three-wire DSTATCOM. In this algorithm, the fuzzy logic controller is compared with the conventional PI (Proportional Integral) controller at DC bus to regulate the DC link capacitor voltage. The fuzzy controller is used to maintain the DC link voltage to the reference value. The switching of VSC will occur by Hysteresis based Pulse Width Modulation (PWM) current controller. The simulations are carried out by using MATLAB/simulink software to demonstrate the effectiveness of the proposed scheme

    On the uniqueness of d-vertex magic constant

    No full text
    Let G = (V,E) be a graph of order n and let D ⊆ {0, 1, 2, 3, . . .}. For v ∈ V, let ND(v) = {u ∈ V : d(u, v) ∈ D}. The graph G is said to be D-vertex magic if there exists a bijection f : V (G) → {1, 2, . . . , n} such that for all v ∈ V, ∑uv∈ND(v) f(u) is a constant, called D-vertex magic constant. O’Neal and Slater have proved the uniqueness of the D-vertex magic constant by showing that it can be determined by the D-neighborhood fractional domination number of the graph. In this paper we give a simple and elegant proof of this result. Using this result, we investigate the existence of distance magic labelings of complete r-partite graphs where r ≥ 4

    Distance magic graphs

    No full text
    Let G = (V, E) be a graph of order n. A bijection f : V -> {1, 2, ..., n} is called a distance magic labeling of G if there exists a positive integer k such that Sigma(u is an element of N(v)) f(u) = k for all v is an element of V, where N(v) is the open neighborhood of v. The constant k is called the magic constant of the labeling f. Any graph which admits a distance magic labeling is called a distance magic graph. In this paper we present several results on distance magic graphs along with open problems.Web of Science9914213
    corecore