317 research outputs found

    On the detection of Lorentzian profiles in a power spectrum: A Bayesian approach using ignorance priors

    Full text link
    Aims. Deriving accurate frequencies, amplitudes, and mode lifetimes from stochastically driven pulsation is challenging, more so, if one demands that realistic error estimates be given for all model fitting parameters. As has been shown by other authors, the traditional method of fitting Lorentzian profiles to the power spectrum of time-resolved photometric or spectroscopic data via the Maximum Likelihood Estimation (MLE) procedure delivers good approximations for these quantities. We, however, show that a conservative Bayesian approach allows one to treat the detection of modes with minimal assumptions (i.e., about the existence and identity of the modes). Methods. We derive a conservative Bayesian treatment for the probability of Lorentzian profiles being present in a power spectrum and describe an efficient implementation that evaluates the probability density distribution of parameters by using a Markov-Chain Monte Carlo (MCMC) technique. Results. Potentially superior to "best-fit" procedure like MLE, which only provides formal uncertainties, our method samples and approximates the actual probability distributions for all parameters involved. Moreover, it avoids shortcomings that make the MLE treatment susceptible to the built-in assumptions of a model that is fitted to the data. This is especially relevant when analyzing solar-type pulsation in stars other than the Sun where the observations are of lower quality and can be over-interpreted. As an example, we apply our technique to CoRoT observations of the solar-type pulsator HD 49933.Comment: 12 pages, 11 figures, accepted for publication in Astronomy and Astrophysic

    Asteroseismic surface gravity for evolved stars

    Get PDF
    Context: Asteroseismic surface gravity values can be of importance in determining spectroscopic stellar parameters. The independent log(g) value from asteroseismology can be used as a fixed value in the spectroscopic analysis to reduce uncertainties due to the fact that log(g) and effective temperature can not be determined independently from spectra. Since 2012, a combined analysis of seismically and spectroscopically derived stellar properties is ongoing for a large survey with SDSS/APOGEE and Kepler. Therefore, knowledge of any potential biases and uncertainties in asteroseismic log(g) values is now becoming important. Aims: The seismic parameter needed to derive log(g) is the frequency of maximum oscillation power (nu_max). Here, we investigate the influence of nu_max derived with different methods on the derived log(g) values. The large frequency separation between modes of the same degree and consecutive radial orders (Dnu) is often used as an additional constraint for the determination of log(g). Additionally, we checked the influence of small corrections applied to Dnu on the derived values of log(g). Methods We use methods extensively described in the literature to determine nu_max and Dnu together with seismic scaling relations and grid-based modeling to derive log(g). Results: We find that different approaches to derive oscillation parameters give results for log(g) with small, but different, biases for red-clump and red-giant-branch stars. These biases are well within the quoted uncertainties of ~0.01 dex (cgs). Corrections suggested in the literature to the Dnu scaling relation have no significant effect on log(g). However somewhat unexpectedly, method specific solar reference values induce biases of the order of the uncertainties, which is not the case when canonical solar reference values are used.Comment: 8 pages, 5 figures, accepted for publication by A&

    The connection between stellar granulation and oscillation as seen by the Kepler mission

    Get PDF
    The long and almost continuous observations by Kepler show clear evidence of a granulation background signal in a large sample of stars, which is interpreted as the surface manifestation of convection. It has been shown that its characteristic timescale and rms intensity fluctuation scale with the peak frequency (\nu_{max}) of the solar-like oscillations. Various attempts have been made to quantify the observed signal, to determine scaling relations, and to compare them to theoretical predictions. We use a probabilistic method to compare different approaches to extracting the granulation signal. We fit the power density spectra of a large set of Kepler targets, determine the granulation and global oscillation parameter, and quantify scaling relations between them. We establish that a depression in power at about \nu_{max}/2, known from the Sun and a few other main-sequence stars, is also statistically significant in red giants and that a super-Lorentzian function with two components is best suited to reproducing the granulation signal in the broader vicinity of the pulsation power excess. We also establish that the specific choice of the background model can affect the determination of \nu_{max}, introducing systematic uncertainties that can significantly exceed the random uncertainties. We find the characteristic background frequency and amplitude to tightly scale with \nu_{max} for a wide variety of stars, and quantify a mass dependency of the latter. To enable comparison with theoretical predictions, we computed effective timescales and intensity fluctuations and found them to approximately scale as \tau_{eff} \propto g^{-0.85}\,T^{-0.4} and A_{gran} \propto (g^2M)^{-1/4}, respectively. Similarly, the bolometric pulsation amplitude scales approximately as A_{puls} \propto (g^2M)^{-1/3}, which implicitly verifies a separate mass and luminosity dependence of A_{puls}.Comment: 18 pages, 12 figures, accepted for A&

    Characterisation of red-giant stars in the public Kepler data

    Full text link
    The first public release of long-cadence stellar photometric data collected by the NASA Kepler mission has now been made available. In this paper we characterise the red-giant (G-K) stars in this large sample in terms of their solar-like oscillations. We use published methods and well-known scaling relations in the analysis. Just over 70% of the red giants in the sample show detectable solar-like oscillations, and from these oscillations we are able to estimate the fundamental properties of the stars. This asteroseismic analysis reveals different populations: low-luminosity H-shell burning red-giant branch stars, cool high-luminosity red giants on the red-giant branch and He-core burning clump and secondary-clump giants.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical Society Main Journa

    The nature of p-modes and granulation in HD 49933 observed by CoRoT

    Get PDF
    Context: Recent observations of HD49933 by the space-photometric mission CoRoT provide photometric evidence of solar type oscillations in a star other than our Sun. The first published reduction, analysis, and interpretation of the CoRoT data yielded a spectrum of p-modes with l = 0, 1, and 2. Aims: We present our own analysis of the CoRoT data in an attempt to compare the detected pulsation modes with eigenfrequencies of models that are consistent with the observed luminosity and surface temperature. Methods: We used the Gruberbauer et al. frequency set derived based on a more conservative Bayesian analysis with ignorance priors and fit models from a dense grid of model spectra. We also introduce a Bayesian approach to searching and quantifying the best model fits to the observed oscillation spectra. Results: We identify 26 frequencies as radial and dipolar modes. Our best fitting model has solar composition and coincides within the error box with the spectroscopically determined position of HD49933 in the H-R diagram. We also show that lower-than-solar Z models have a lower probability of matching the observations than the solar metallicity models. To quantify the effect of the deficiencies in modeling the stellar surface layers in our analysis, we compare adiabatic and nonadiabatic model fits and find that the latter reproduces the observed frequencies better.Comment: accepted to be published in A&A, 9 pages, 5 figure

    Atmospheric parameters and chemical properties of red giants in the CoRoT asteroseismology fields

    Get PDF
    A precise characterisation of the red giants in the seismology fields of the CoRoT satellite is a prerequisite for further in-depth seismic modelling. High-resolution FEROS and HARPS spectra were obtained as part of the ground-based follow-up campaigns for 19 targets holding great asteroseismic potential. These data are used to accurately estimate their fundamental parameters and the abundances of 16 chemical species in a self-consistent manner. Some powerful probes of mixing are investigated (the Li and CNO abundances, as well as the carbon isotopic ratio in a few cases). The information provided by the spectroscopic and seismic data is combined to provide more accurate physical parameters and abundances. The stars in our sample follow the general abundance trends as a function of the metallicity observed in stars of the Galactic disk. After an allowance is made for the chemical evolution of the interstellar medium, the observational signature of internal mixing phenomena is revealed through the detection at the stellar surface of the products of the CN cycle. A contamination by NeNa-cycled material in the most massive stars is also discussed. With the asteroseismic constraints, these data will pave the way for a detailed theoretical investigation of the physical processes responsible for the transport of chemical elements in evolved, low- and intermediate-mass stars.Comment: Accepted for publication in A&A, 25 pages, 13 colour figures (revised version after language editing

    Observations of tides and circularization in red-giant binaries from Kepler photometry

    Full text link
    Binary stars are places of complex stellar interactions. While all binaries are in principle converging towards a state of circularization, many eccentric systems are found even in advanced stellar phases. In this work we discuss the sample of binaries with a red-giant component, discovered from observations of the NASA Kepler space mission. We first discuss which effects and features of tidal interactions are detectable in photometry, spectroscopy and the seismic analysis. In a second step, the sample of binary systems observed with Kepler, is compared to the well studied sample of Verbunt & Phinney (1995, hereafter VP95). We find that this study of circularization of systems hosting evolving red-giant stars with deep convective envelopes is also well applicable to the red-giant binaries in the sample of Kepler stars.Comment: Proceedings paper for the J-P Zahn Symposion, Paris, 6 Pages, 2 Figure
    • …
    corecore