63 research outputs found

    Novel Small Leucine-Rich Protein Chondroadherin-like (CHADL) is Expressed in Cartilage and Modulates Chondrocyte Differentiation.

    Get PDF
    The constitution and biophysical properties of extracellular matrices can dramatically influence cellular phenotype during development, homeostasis, or pathogenesis. These effects can be signaled through a differentially regulated assembly of collagen fibrils, orchestrated by a family of collagen-associated Small Leucine-Rich Proteins, SLRPs. In this report, we describe the tissue-specific expression and function of a previously uncharacterized SLRP Chondroadherin-like (CHADL). We have developed antibodies against CHADL and, by immunohistochemistry, detected CHADL expression mainly in skeletal tissues, particularly in fetal cartilage and in pericellular space of adult chondrocytes. In situ hybridizations and immunoblots on tissue lysates confirmed this tissue-specific expression pattern. Recombinant CHADL bound collagen in cell culture, and inhibited in vitro collagen fibrillogenesis. After Chadl shRNA knockdown chondrogenic ATDC5 cells increased their proliferation and differentiation, indicated by increased transcript levels of Sox9, Ihh, Col2a1, and Col10a1. The knockdown increased collagen II and aggrecan deposition in the cell layers. Microarray analysis of the knockdown samples suggested collagen receptor-related changes, although other upstream effects could not be excluded. Together, our data indicate that the novel SLRP CHADL is expressed in cartilaginous tissues, influences collagen fibrillogenesis, and modulates chondrocyte proliferation and differentiation. CHADL appears to have a negative regulatory role, possibly ensuring the formation of a stable extracellular matrix

    Fibromodulin Interacts with Collagen Cross-linking Sites and Activates Lysyl Oxidase.

    Get PDF
    The hallmark of fibrotic disorders is a highly cross-linked and dense collagen matrix, a property driven by the oxidative action of lysyl oxidase. Other fibrosis-associated proteins also contribute to the final collagen matrix properties, one of which is fibromodulin. Its interactions with collagen affect collagen cross-linking, packing, and fibril diameter. We investigated the possibility that a specific relationship exists between fibromodulin and lysyl oxidase, potentially imparting a specific collagen matrix phenotype. We mapped the fibromodulin-collagen interaction sites using the collagen II and III Toolkit peptide libraries. Fibromodulin interacted with the peptides containing the known collagen cross-linking sites and the MMP-1 cleavage site in collagens I and II. Interestingly, the interaction sites are closely aligned within the quarter-staggered collagen fibril, suggesting a multivalent interaction between fibromodulin and several collagen helices. Furthermore, we detected an interaction between fibromodulin and lysyl oxidase (a major collagen cross-linking enzyme) and mapped the interaction site to 12 N-terminal amino acids on fibromodulin. This interaction also increases the activity of lysyl oxidase. Together, the data suggest a fibromodulin-modulated collagen cross-linking mechanism where fibromodulin binds to a specific part of the collagen domain and also forms a complex with lysyl oxidase, targeting the enzyme toward specific cross-linking sites.SK and KR were supported by grants from the Swedish Cancer Foundation, the Swedish Research Council, the Alfred Österlund Foundation, the Crafoord Foundation, the Magnus Bergvall Foundation, and the Åke Wiberg Foundation; AB, DB and RWF by grants from the Wellcome Trust (094470/Z/10/Z) and British Heart Foundation (RG/15/4/31268).This is the final version of the article. It first appeared from the American Society for Biochemistry and Molecular Biology] via http://dx.doi.org/10.1074/jbc.M115.69340

    Structural and functional analysis of two small leucine-rich repeat proteoglycans, fibromodulin and chondroadherin.

    Get PDF
    The small leucine-rich proteoglycans (SLRPs) are important regulators of extracellular matrix assembly and cell signalling. We have determined crystal structures at ~2.2Å resolution of human fibromodulin and chondroadherin, two collagen-binding SLRPs. Their overall fold is similar to that of the prototypical SLRP, decorin, but unlike decorin neither fibromodulin nor chondroadherin forms a stable dimer. A previously identified binding site for integrin α2β1 maps to an α-helix in the C-terminal cap region of chondroadherin. Interrogation of the Collagen Toolkits revealed a unique binding site for chondroadherin in collagen II, and no binding to collagen III. A triple-helical peptide containing the sequence GAOGPSGFQGLOGPOGPO (O is hydroxyproline) forms a stable complex with chondroadherin in solution. In fibrillar collagen I and II, this sequence is aligned with the collagen cross-linking site KGHR, suggesting a role for chondroadherin in cross-linking

    Fibromodulin Deficiency Reduces Low-Density Lipoprotein Accumulation in Atherosclerotic Plaques in Apolipoprotein E-Null Mice.

    Get PDF
    OBJECTIVE: The aim of this study was to analyze how an altered collagen structure affects development of atherosclerotic plaques. METHODS AND RESULTS: Fibromodulin-null mice develop an abnormal collagen fibril structure. In apolipoprotein E (ApoE)-null and ApoE/fibromodulin-null mice, a shear stress-modifying carotid artery cast induced formation of atherosclerotic plaques of different phenotypes; inflammatory in low-shear stress regions and fibrous in oscillatory shear stress regions. Electron microscopy showed that collagen fibrils were thicker and more heterogeneous in oscillatory shear stress lesions from ApoE/fibromodulin-null mice. Low-shear stress lesions were smaller in ApoE/fibromodulin-null mice and contained less lipids. Total plaque burden in aortas stained en face with Oil Red O, as well as lipid accumulation in aortic root lesions, was also decreased in ApoE/fibromodulin-null mice. In addition, lipid accumulation in RAW264.7 macrophages cultured on fibromodulin-deficient extracellular matrix was decreased, whereas levels of interleukin-6 and -10 were increased. Our results show that an abnormal plaque collagen fibril structure can influence atherosclerotic plaque development. CONCLUSIONS: The present findings suggest a more complex role for collagen in plaque stability than previously anticipated, in that it may promote lipid-accumulation and inflammation at the same time as it provides mechanical stability

    Genomic editing of metformin efficacy-associated genetic variants in SLC47A1 does not alter SLC47A1 expression

    Get PDF
    Several pharmacogenetics studies have identified an association between a greater metformin-dependent reduction in HbA1c levels and the minor A allele at rs2289669 in intron 10 of SLC47A1, encoding multidrug and toxin extrusion 1 (MATE1), a presumed metformin transporter. It is currently unknown if the rs2289669 locus is a cis-eQTL, which would validate its role as predictor of metformin efficacy. We looked at association between common genetic variants in the SLC47A1 gene region and HbA1c reduction after metformin treatment using locus-wise meta-analysis from the MetGen consortium. CRISPR-Cas9 was applied to perform allele editing of, or genomic deletion around, rs2289669 and of the closely linked rs8065082 in HepG2 cells. The genome-edited cells were evaluated for SLC47A1 expression and splicing. None of the common variants including rs2289669 showed significant association with metformin response. Genomic editing of either rs2289669 or rs8065082 did not alter SLC47A1 expression or splicing. Experimental and in silico analyses show that the rs2289669-containing haploblock does not appear to carry genetic variants that could explain its previously reported association with metformin efficacy.Peer reviewe

    A phenome-wide comparative analysis of genetic discordance between obesity and type 2 diabetes

    Get PDF
    Obesity and type 2 diabetes are causally related, yet there is considerable heterogeneity in the consequences of both conditions and the mechanisms of action are poorly defined. Here we show a genetic-driven approach defining two obesity profiles that convey highly concordant and discordant diabetogenic effects. We annotate and then compare association signals for these profiles across clinical and molecular phenotypic layers. Key differences are identified in a wide range of traits, including cardiovascular mortality, fat distribution, liver metabolism, blood pressure, specific lipid fractions and blood levels of proteins involved in extracellular matrix remodelling. We find marginal differences in abundance of Bacteroidetes and Firmicutes bacteria in the gut. Instrumental analyses reveal prominent causal roles for waist-to-hip ratio, blood pressure and cholesterol content of high-density lipoprotein particles in the development of diabetes in obesity. We prioritize 17 genes from the discordant signature that convey protection against type 2 diabetes in obesity, which may represent logical targets for precision medicine approaches.</p

    Functions of small leucine-rich repeat proteoglycans in connective tissues

    No full text
    Biological properties of connective tissues rely heavily on collagen and its use in formation of extracellular networks (matrices) in which cells can live and move. To regulate the process of collagen matrix assembly, the cells secrete small leucine-rich repeat proteoglycans (SLRPs) that bind to collagen and influence its fibril formation. In this manner, fibromodulin - one of the SLRPs - can alter intermolecular cross-linking of collagen, which has long-term implications for the structural integrity of the connective tissue. Since SLRPs can bind to collagen in via different domains, and are expressed in different tissues, their regulation of collagen matrices is fine-tuned for the physiological requirements. For example, decorin and lumican interact with collagen using their central leucine-rich repeat domains, while fibromodulin makes use of its C-terminal domain. In addition, some SLRPs can inhibit each other's binding to collagen. These differences, together with the detailed knowledge on matrix protein interactions, can be useful to explain the development of connective tissues. In a longer time perspective, this knowledge could allow to manipulate fibrotic processes in pathological conditions like cancer or atherosclerosis - the two major causes of death in our society. The potential for such intervention is high, since fibromodulin is abundant in cancer stroma, raising its interstitial fluid pressure that hinders an efficient anti-cancer drug medication. Furthermore, fibromodulin is expressed in atherosclerotic plaques, regulating the growth of the fibrous cap and activity of smooth muscle cells. These observations validate further investigations into this field of connective tissue biology

    Fibromodulin binds collagen type I via Glu-353 and Lys-355 in leucine-rich repeat 11

    No full text
    Fibromodulin belongs to the small leucine-rich repeat proteoglycan family, interacts with collagen type I, and controls collagen fibrillogenesis and assembly. Here, we show that a major fibromodulin-binding site for collagen type I is located in leucine-rich repeat 11 in the C terminus of the leucine-rich repeat domain. We identified Glu-353 and Lys-355 in repeat 11 as essential for binding, and the synthetic peptide RLDGNEIKR, including Glu-353 and Lys-355, inhibits the binding of fibromodulin to collagen in vitro. Fibromodulin and lumican compete for the same binding region on collagen, and fibromodulin can inhibit the binding of lumican to collagen type I. However, the peptide RLDGNEIKR does not inhibit the binding of lumican to collagen, suggesting separate but closely situated fibromodulin- and lumican-binding sites in collagen. The collagen-binding Glu-353 and Lys-355 residues in fibromodulin are exposed on the exterior of the beta-sheet-loop structure of the leucine-rich repeat, which resembles the location of interacting residues in other leucine-rich repeat proteins, e. g. decorin

    Homologous sequence in lumican and fibromodulin LRR 5-7 competes for collagen binding.

    No full text
    Lumican and fibromodulin compete for collagen type I binding in vitro and fibromodulin-deficient mice have four-fold more lumican in tendons. These observations indicate that homologous sequences in lumican and fibromodulin bind to collagen type I. Here, we demonstrate that lumican binding to collagen type I is mediated mainly by Asp-213 in LRR 7. The mutation D213N in lumican impairs interaction with collagen, and the lumican fragment spanning LRRs 5-7 is an efficient inhibitor of collagen binding. Also, the lumican LRR 7 sequence-based synthetic peptide CYLDNNKC inhibits the binding to collagen. Homologous collagen-binding site in fibromodulin, located in LRRs 5-7, inhibits the binding of lumican to collagen, and the mutation E251Q in this fibromodulin fragment does not inhibit the lumican-collagen binding. Lumican, but not the the D213N mutation, lowers the melting point and affects the packing of collagen fibrils

    The role of small leucine-rich proteoglycans in collagen fibrillogenesis.

    No full text
    Small leucine-rich proteoglycans/proteins (SLRPs) are associated with collagen fibril formation, and therefore important for the proper formation of extracellular matrices. SLRPs are differentially expressed in tissues and during pathological conditions, contributing to the development of connective tissue properties. The binding of SLRPs to collagens have recently been characterized, and may give some clues to the significance of these interactions. In this mini review, we summarize published work in this field, and propose several mechanisms for how SLRPs can control collagen matrix structure and function. SLRPs appear to influence collagen cross-linking patterns. We also propose that the SLRP-collagen interactions can assist in the process of juxtaposing the collagen monomers by steric hindrance or by directly connecting two collagen monomers during the fibril growth
    • …
    corecore