26 research outputs found

    On the Origin of Lymanα\alpha Blobs at High Redshift: Submillimetric Evidence for a Hyperwind Galaxy at z=3.1

    Full text link
    The most remarkable class of high-redshift objects observed so far is extended Lyα\alpha emission-line blobs found in an over-density region at redshift 3.1. They may be either a dust-enshrouded, extreme starburst galaxy with a large-scale galactic outflow (superwind) or cooling radiation from dark matter halos. Recently one of these Lyα\alpha blobs has been detected at submillimeter wavelengths (450 and 850 Ό\mum). Here we show that its rest-frame spectral energy distribution between optical and far-infrared is quite similar to that of Arp 220, which is a typical ultraluminous starburst/superwind galaxy in the local universe. This suggests strongly that the superwind model proposed by Taniguchi & Shioya is applicable to this Lyα\alpha blob. Since the blob is more luminous in the infrared by a factor of 30 than Arp 220, it comprises a new population of hyperwind galaxies at high redshift.Comment: 4 pages, 1 figure. ApJ (Letters), in pres

    Hawaii quasar and T dwarf survey. I. Method and discovery of faint field ultracool dwarfs

    Get PDF
    The Hawaii Quasar and T dwarf survey (HQT Survey) is a wide-field, red optical survey carried out with the Suprime-Cam mosaic CCD camera on the 8.2 m Subaru telescope. The HQT survey is designed to search for low-luminosity (M_(AB1450) 5.7) as well as T dwarfs, both of which are selected by their very red I − z' colors. We use an optical narrowband filter NB816 to break a well-known I − z' color degeneracy between high-z quasars and foreground M and L dwarfs, which are more numerous than quasars. This paper is the first in a series of papers from the HQT survey and we report on the discovery of six faint (19 ≀ J ≀ 20) ultracool dwarfs found over a ~9.3 deg^2 area with a limiting magnitude of z'_(AB) ≀ 23.3. These dwarfs were confirmed by near-IR imaging and/or spectroscopy conducted at various facilities on Mauna Kea. With estimated distances of 60–170 pc, these are among the most distant spectroscopically confirmed field brown dwarfs to date. Limits on the proper motions of these ultracool dwarfs suggest that they are old members of the Galactic disk, though future follow-up observations are necessary to minimize errors. Our finding rate of ultracool dwarfs is within model predictions of Liu et al. However, the large brightening amplitude (~1 mag) previously reported for the L/T transition objects appears to overpredict the numbers. We also examine how the survey field latitude affects the survey sensitivity to the vertical scale height of ultracool dwarfs

    Dust Attenuation in High Redshift Galaxies -- 'Diamonds in the Sky'

    Get PDF
    We use observed optical to near infrared spectral energy distributions (SEDs) of 266 galaxies in the COSMOS survey to derive the wavelength dependence of the dust attenuation at high redshift. All of the galaxies have spectroscopic redshifts in the range z = 2 to 6.5. The presence of the CIV absorption feature, indicating that the rest-frame UV-optical SED is dominated by OB stars, is used to select objects for which the intrinsic, unattenuated spectrum has a well-established shape. Comparison of this intrinsic spectrum with the observed broadband photometric SED then permits derivation of the wavelength dependence of the dust attenuation. The derived dust attenuation curve is similar in overall shape to the Calzetti curve for local starburst galaxies. We also see the 2175 \AA~bump feature which is present in the Milky Way and LMC extinction curves but not seen in the Calzetti curve. The bump feature is commonly attributed to graphite or PAHs. No significant dependence is seen with redshift between sub-samples at z = 2 - 4 and z = 4 - 6.5. The 'extinction' curve obtained here provides a firm basis for color and extinction corrections of high redshift galaxy photometry.Comment: accepted Ap

    The Stellar Population of Lyman-alpha Emitting Galaxies at z ~ 5.7

    Full text link
    We present a study of three Lyman-alpha emitting galaxies (LAEs), selected via a narrow-band survey in the GOODS northern field, and spectroscopically confirmed to have redshifts of z ~ 5.65. Using HST ACS and Spitzer IRAC data, we constrain the rest-frame UV-to-optical spectral energy distributions (SEDs) of the galaxies. Fitting stellar population synthesis models to the observed SEDs, we find best-fit stellar populations with masses between ~ 10^9 - 10^10 M_sun and ages between ~ 5 - 100 Myr, assuming a simple starburst star formation history. However, stellar populations as old as 700 Myr are admissible if a constant star formation rate model is considered. Very deep near-IR observations may help to narrow the range of allowed models by providing extra constraints on the rest-frame UV spectral slope. Our narrow-band selected objects and other IRAC-detected z ~ 6 i'-dropout galaxies have similar 3.6 um magnitudes and z' - [3.6] colors, suggesting that they posses stellar populations of similar masses and ages. This similarity may be the result of a selection bias, since the IRAC-detected LAEs and i'-dropouts probably only sample the bright end of the luminosity function. On the other hand, our LAEs have blue i' - z' colors compared to the i'-dropouts, and would have been missed by the i'-dropout selection criterion. A better understanding of the overlap between the LAE and the i'-dropout populations is necessary in order to constrain the properties of the overall high-redshift galaxy population, such as the total stellar mass density at z ~ 6.Comment: 10 pages, 8 figures. Accepted for publication in Ap

    Effects of a burst of formation of first-generation stars on the evolution of galaxies

    Full text link
    First-generation (Population III) stars in the universe play an important role inearly enrichment of heavy elements in galaxies and intergalactic medium and thus affect the history of galaxies. The physical and chemical properties of primordial gas clouds are significantly different from those of present-day gas clouds observed in the nearby universe because the primordial gas clouds do not contain any heavy elements which are important coolants in the gas. Previous theoretical considerations have suggested that typical masses of the first-generation stars are between several M⊙M_\odot and ≈10M⊙\approx 10 M_\odot although it has been argued that the formation of very massive stars (e.g., >100M⊙> 100 M_\odot) is also likely. If stars with several M⊙M_\odot are most popular ones at the epoch of galaxy formation, most stars will evolve to hot (e.g., ≳105\gtrsim 10^5 K), luminous (∌104L⊙\sim 10^4 L_\odot) stars with gaseous and dusty envelope prior to going to die as white dwarf stars. Although the duration of this phase is short (e.g., ∌105\sim 10^5 yr), such evolved stars could contribute both to the ionization of gas in galaxies and to the production of a lot of dust grains if the formation of intermediate-mass stars is highly enhanced. We compare gaseous emission-line properties of such nebulae with some interesting high-redshift galaxies such asIRAS F10214+4724 and powerful radio galaxies.Comment: 25 pages, 7 figures, ApJ, in pres

    Deep Spectroscopy of Ultra-Strong Emission Line Galaxies

    Full text link
    Ultra strong emission-line galaxies (USELs) with extremely high equivalent widths (EW(H beta) > 30A) can be used to pick out galaxies of extremely low metallicity in the z=0-1 redshift range. Large numbers of these objects are easily detected in deep narrow band searches and, since most have detectable [OIII] 4363, their metallicities determined using the direct method. These large samples hold the possibility for determining if there is a metallicity floor for the galaxy population. Here we describe results of an extensive spectroscopic follow-up of the Kakazu et al. (2007) catalog of 542 USELs using the DEIMOS spectrograph on Keck, with high S/N spectra of 348 galaxies. The two lowest metallicity galaxies in our sample have 12+log(O/H)=6.97+/-0.17 and 7.25+/-0.03 -- values comparable to the lowest metallicity galaxies found to date. We determine an empirical metallicity-R23 parameter relation for our sample, and compare this to the relationship for low redshift galaxies. The determined metallicity-luminosity relation is compared with those of magnitude selected samples in the same redshift range. The emission line selected galaxies show a metal-luminosity relation where the metallicity decreases with luminosity and they appear to define the lower bound of the galaxy metallicity distribution at a given continuum luminosity. We also compute the H alpha luminosity function of the USELs as a function of redshift and use this to compute an upper bound on the Ly alpha emitter luminosity function over the z=0-1 redshift range.Comment: 10 pages, 15 PostScript figures, uses emulateapj.sty, submitted to Ap

    SDSSp J104433.04−-012502.2 at z=5.74z=5.74 is Gravitationally Magnified by an Intervening Galaxy

    Get PDF
    During the course of our optical deep survey program on Lα\alpha emitters at z≈5.7z \approx 5.7 in the sky area surrounding the quasar SDSSp J104433.04−-012502.2 at z=5.74z=5.74, we found that a faint galaxy with mBm_B(AB) ≈25\approx 25 is located at \timeform{1".9} southwest of the quasar. Its broad-band color properties from BB to zâ€Čz^\prime suggest that the galaxy is located at a redshift of z∌1.5z \sim 1.5 -- 2.5. This is consistent with no strong emission line in our optical spectroscopy. Since the counter image of the quasar cannot be seen in our deep optical images, the magnification factor seems not to be very high. Our modest estimate is that this quasar is gravitationally magnified by a factor of 2.Comment: 11 pages, 5 figures, PASJ, in pres

    The Discovery of a Very Narrow-Line Star Forming Obat a Redshift of 5.66ject

    Full text link
    We report on the discovery of a very narrow-line star forming object beyond redshift of 5. Using the prime-focus camera, Suprime-Cam, on the 8.2 m Subaru telescope together with a narrow-passband filter centered at λc\lambda_{\rm c} = 8150 \AA with passband of Δλ\Delta\lambda = 120 \AA, we have obtained a very deep image of the field surrounding the quasar SDSSp J104433.04−-012502.2 at a redshift of 5.74. Comparing this image with optical broad-band images, we have found an object with a very strong emission line. Our follow-up optical spectroscopy has revealed that this source is at a redshift of z=5.655±0.002z=5.655\pm0.002, forming stars at a rate ∌13 h0.7−2 M⊙\sim 13 ~ h_{0.7}^{-2} ~ M_\odot yr−1^{-1}. Remarkably, the velocity dispersion of Lyα\alpha-emitting gas is only 22 km s−1^{-1}. Since a blue half of the Lyα\alpha emission could be absorbed by neutral hydrogen gas, perhaps in the system, a modest estimate of the velocity dispersion may be ≳\gtrsim 44 km s−1^{-1}. Together with a linear size of 7.7 h0.7−1h_{0.7}^{-1} kpc, we estimate a lower limit of the dynamical mass of this object to be ∌2×109M⊙\sim 2 \times 10^9 M_\odot. It is thus suggested that LAE J1044−-0123 is a star-forming dwarf galaxy (i.e., a subgalactic object or a building block) beyond redshift 5 although we cannot exclude a possibility that most Lyα\alpha emission is absorbed by the red damping wing of neutral intergalactic matter.Comment: 6 pages, 2 figures. ApJ Letters, in pres
    corecore