129 research outputs found

    FISH: A 3D parallel MHD code for astrophysical applications

    Full text link
    FISH is a fast and simple ideal magneto-hydrodynamics code that scales to ~10 000 processes for a Cartesian computational domain of ~1000^3 cells. The simplicity of FISH has been achieved by the rigorous application of the operator splitting technique, while second order accuracy is maintained by the symmetric ordering of the operators. Between directional sweeps, the three-dimensional data is rotated in memory so that the sweep is always performed in a cache-efficient way along the direction of contiguous memory. Hence, the code only requires a one-dimensional description of the conservation equations to be solved. This approach also enable an elegant novel parallelisation of the code that is based on persistent communications with MPI for cubic domain decomposition on machines with distributed memory. This scheme is then combined with an additional OpenMP parallelisation of different sweeps that can take advantage of clusters of shared memory. We document the detailed implementation of a second order TVD advection scheme based on flux reconstruction. The magnetic fields are evolved by a constrained transport scheme. We show that the subtraction of a simple estimate of the hydrostatic gradient from the total gradients can significantly reduce the dissipation of the advection scheme in simulations of gravitationally bound hydrostatic objects. Through its simplicity and efficiency, FISH is as well-suited for hydrodynamics classes as for large-scale astrophysical simulations on high-performance computer clusters. In preparation for the release of a public version, we demonstrate the performance of FISH in a suite of astrophysically orientated test cases.Comment: 27 pages, 11 figure

    Neutrino-driven winds from neutron star merger remnants

    Full text link
    We present a detailed, 3D hydrodynamics study of the neutrino-driven winds that emerge from the remnant of a NS merger. Our simulations are performed with the Newtonian, Eulerian code FISH, augmented by a detailed, spectral neutrino leakage scheme that accounts for heating due to neutrino absorption in optically thin conditions. Consistent with the 2D study of Dessart et al. (2009), we find that a strong baryonic wind is blown out along the original binary rotation axis within 100100 ms after the merger. We compute a lower limit on the expelled mass of 3.5×10−3M⊙3.5 \times 10^{-3} M_{\odot}, large enough to be relevant for heavy element nucleosynthesis. The physical properties vary significantly between different wind regions. For example, due to stronger neutrino irradiation, the polar regions show substantially larger YeY_e than those at lower latitudes. This has its bearings on the nucleosynthesis: the polar ejecta produce interesting r-process contributions from A∌80A\sim 80 to about 130, while the more neutron-rich, lower-latitude parts produce also elements up to the third r-process peak near A∌195A\sim 195. We also calculate the properties of electromagnetic transients that are powered by the radioactivity in the wind, in addition to the macronova transient that stems from the dynamic ejecta. The high-latitude (polar) regions produce UV/optical transients reaching luminosities up to 1041erg s−110^{41} {\rm erg \, s^{-1}}, which peak around 1 day in optical and 0.3 days in bolometric luminosity. The lower-latitude regions, due to their contamination with high-opacity heavy elements, produce dimmer and more red signals, peaking after ∌2\sim 2 days in optical and infrared. Our numerical experiments indicate that it will be difficult to infer the collapse time-scale of the HMNS to a BH based on the wind electromagnetic transient, at least for collapse time-scales larger than the wind production time-scale.Comment: 25 pages, 4 tables, 22 figures. Submitted to MNRA

    Anti-Microbial Dendrimers against Multidrug-Resistant P. aeruginosa Enhance the Angiogenic Effect of Biological Burn-wound Bandages.

    Get PDF
    Multi-drug resistant Pseudomonas aeruginosa has increased progressively and impedes further regression in mortality in burn patients. Such wound infections serve as bacterial reservoir for nosocomial infections and are associated with significant morbidity and costs. Anti-microbial polycationic dendrimers G3KL and G3RL, able to kill multi-drug resistant P. aeruginosa, have been previously developed. The combination of these dendrimers with a class of biological bandages made of progenitor skin cells, which secrete growth factors, could positively impact wound-healing processes. However, polycations are known to be used as anti-angiogenic agents for tumor suppression. Since, neovascularization is pivotal in the healing of deep burn-wounds, the use of anti-microbial dendrimers may thus hinder the healing processes. Surprisingly, we have seen in this study that G3KL and G3RL dendrimers can have angiogenic effects. Moreover, we have shown that a dendrimer concentration ranging between 50 and 100 ÎŒg/mL in combination with the biological bandages can suppress bacterial growth without altering cell viability up to 5 days. These results show that antimicrobial dendrimers can be used in combination with biological bandages and could potentially improve the healing process with an enhanced angiogenesis

    Gravitational waves from supernova matter

    Full text link
    We have performed a set of 11 three-dimensional magnetohydrodynamical core collapse supernova simulations in order to investigate the dependencies of the gravitational wave signal on the progenitor's initial conditions. We study the effects of the initial central angular velocity and different variants of neutrino transport. Our models are started up from a 15 solar mass progenitor and incorporate an effective general relativistic gravitational potential and a finite temperature nuclear equation of state. Furthermore, the electron flavour neutrino transport is tracked by efficient algorithms for the radiative transfer of massless fermions. We find that non- and slowly rotating models show gravitational wave emission due to prompt- and lepton driven convection that reveals details about the hydrodynamical state of the fluid inside the protoneutron stars. Furthermore we show that protoneutron stars can become dynamically unstable to rotational instabilities at T/|W| values as low as ~2 % at core bounce. We point out that the inclusion of deleptonization during the postbounce phase is very important for the quantitative GW prediction, as it enhances the absolute values of the gravitational wave trains up to a factor of ten with respect to a lepton-conserving treatment.Comment: 10 pages, 6 figures, accepted, to be published in a Classical and Quantum Gravity special issue for MICRA200

    Work-related stress and intention to leave among midwives working in Swiss maternity hospitals : a cross-sectional study

    Get PDF
    Health systems around the globe are struggling to recruit qualified health professionals. Work-related stress plays an important role in why health professionals leave their profession prematurely. However, little is known about midwives' working conditions and intentions to leave their profession, although this knowledge is key to work force retention. Therefore, we aimed to investigate work-related stress among midwives working in Swiss maternity hospitals, as well as differences between midwives and other health professionals and the stressors associated with midwives' intention to leave the profession

    Rickettsia helvetica in Dermacentor reticulatus Ticks

    Get PDF
    We report on the molecular evidence that Dermacentor reticulatus ticks in Croatia are infected with Rickettsia helvetica (10%) or Rickettsia slovaca (2%) or co-infected with both species (1%). These findings expand the knowledge of the geographic distribution of R. helvetica and D. reticulatus ticks

    Job satisfaction of midwives working in a labor ward : a repeat measure mixed-methods study

    Get PDF
    INTRODUCTION: Job satisfaction of midwives is important to prevent skill shortage. Those working in midwife-led models of care work more independently and have more responsibility. No previous study investigated if a self-initiated and self-responsible project could enhance job satisfaction of midwives working in a medical-led maternity unit. The aim of this study was therefore to assess job satisfaction before and after the implementation of such a project. METHODS: This is longitudinal observational study at three time points using quantitative and qualitative methods. A total of 43 midwives working in a Swiss labor ward participated in the online surveys and in the focus group discussions. The surveys comprised questions from validated instruments to assess job satisfaction. Descriptive and multivariable time series analysis were used for quantitative and content analysis for qualitative data. RESULTS: Adjusted predicted scores decreased between t0 and t1, and subsequently increased at t2 without reaching baseline values (e.g. ‘professional support subscales’ between t0 and t1: (0.65; 95% CI: 0.45–0.86 vs 0.26; 95% CI: 0.08–0.45, p=0.005) and between t0 and t2 (0.65; 95% CI: 0.45–0.86 vs 0.29; 95% CI: 0.12–0.47, p=0.004). Focus group discussions revealed four themes: ‘general job satisfaction’, ‘challenges with the implementation’, ‘continuity of care’ and ‘meaning for the mothers’. Midwives perceived the additional tasks as stressors. CONCLUSIONS: The implementation of new projects might enhance work-related stress and consequently have negative impacts on job satisfaction in an early phase. Heads of institutions and policy makers should recognize the needs of support and additional resources for staff when implementing new projects

    Association of Interprofessional Discharge Planning Using an Electronic Health Record Tool With Hospital Length of Stay Among Patients with Multimorbidity: A Nonrandomized Controlled Trial

    Get PDF
    Whether interprofessional collaboration is effective and safe in decreasing hospital length of stay remains controversial.; To evaluate the outcomes and safety associated with an electronic interprofessional-led discharge planning tool vs standard discharge planning to safely reduce length of stay among medical inpatients with multimorbidity.; This multicenter prospective nonrandomized controlled trial used interrupted time series analysis to examine medical acute hospitalizations at 82 hospitals in Switzerland. It was conducted from February 2017 through January 2019. Data analysis was conducted from March 2021 to July 2022.; After a 12-month preintervention phase (February 2017 through January 2018), an electronic interprofessional-led discharge planning tool was implemented in February 2018 in 7 intervention hospitals in addition to standard discharge planning.; Mixed-effects segmented regression analyses were used to compare monthly changes in trends of length of stay, hospital readmission, in-hospital mortality, and facility discharge after the implementation of the tool with changes in trends among control hospitals.; There were 54 695 hospitalizations at intervention hospitals, with 27 219 in the preintervention period (median [IQR] age, 72 [59-82] years; 14 400 [52.9%] men) and 27 476 in the intervention phase (median [IQR] age, 72 [59-82] years; 14 448 [52.6%] men) and 438 791 at control hospitals, with 216 261 in the preintervention period (median [IQR] age, 74 [60-83] years; 109 770 [50.8%] men) and 222 530 in the intervention phase (median [IQR] age, 74 [60-83] years; 113 053 [50.8%] men). The mean (SD) length of stay in the preintervention phase was 7.6 (7.1) days for intervention hospitals and 7.5 (7.4) days for control hospitals. During the preintervention phase, population-averaged length of stay decreased by -0.344 hr/mo (95% CI, -0.599 to -0.090 hr/mo) in control hospitals; however, no change in trend was observed among intervention hospitals (-0.034 hr/mo; 95% CI, -0.646 to 0.714 hr/mo; difference in slopes, P = .09). Over the intervention phase (February 2018 through January 2019), length of stay remained unchanged in control hospitals (slope, -0.011 hr/mo; 95% CI, -0.281 to 0.260 hr/mo; change in slope, P = .03), but decreased steadily among intervention hospitals by -0.879 hr/mo (95% CI, -1.607 to -0.150 hr/mo; change in slope, P = .04, difference in slopes, P = .03). Safety analyses showed no change in trends of hospital readmission, in-hospital mortality, or facility discharge over the whole study time.; In this nonrandomized controlled trial, the implementation of an electronic interprofessional-led discharge planning tool was associated with a decline in length of stay without an increase in hospital readmission, in-hospital mortality, or facility discharge.; isrctn.org Identifier: ISRCTN83274049
    • 

    corecore