356 research outputs found

    Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation.

    Get PDF
    Adult somatic tissues have proven difficult to expand in vitro, largely because of the complexity of recreating appropriate environmental signals in culture. We have overcome this problem recently and developed culture conditions for adult stem cells that allow the long-term expansion of adult primary tissues from small intestine, stomach, liver and pancreas into self-assembling 3D structures that we have termed 'organoids'. We provide a detailed protocol that describes how to grow adult mouse and human liver and pancreas organoids, from cell isolation and long-term expansion to genetic manipulation in vitro. Liver and pancreas cells grow in a gel-based extracellular matrix (ECM) and a defined medium. The cells can self-organize into organoids that self-renew in vitro while retaining their tissue-of-origin commitment, genetic stability and potential to differentiate into functional cells in vitro (hepatocytes) and in vivo (hepatocytes and endocrine cells). Genetic modification of these organoids opens up avenues for the manipulation of adult stem cells in vitro, which could facilitate the study of human biology and allow gene correction for regenerative medicine purposes. The complete protocol takes 1-4 weeks to generate self-renewing 3D organoids and to perform genetic manipulation experiments. Personnel with basic scientific training can conduct this protocol.LB is supported by an EMBO Postdoctoral fellowship (EMBO ALTF 794-2014). CH is supported by a Cambridge Stem Cell Institute Seed Fund award and the Herchel Smith Fund. BK is supported by a Sir Henry Dale Fellowship from the Wellcome Trust and the Royal Society. MH is a Wellcome Trust Sir Henry Dale Fellow and is jointly funded by the Wellcome Trust and the Royal Society (104151/Z/14/Z).This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nprot.2016.097

    TEAD and YAP regulate the enhancer network of human embryonic pancreatic progenitors.

    Get PDF
    The genomic regulatory programmes that underlie human organogenesis are poorly understood. Pancreas development, in particular, has pivotal implications for pancreatic regeneration, cancer and diabetes. We have now characterized the regulatory landscape of embryonic multipotent progenitor cells that give rise to all pancreatic epithelial lineages. Using human embryonic pancreas and embryonic-stem-cell-derived progenitors we identify stage-specific transcripts and associated enhancers, many of which are co-occupied by transcription factors that are essential for pancreas development. We further show that TEAD1, a Hippo signalling effector, is an integral component of the transcription factor combinatorial code of pancreatic progenitor enhancers. TEAD and its coactivator YAP activate key pancreatic signalling mediators and transcription factors, and regulate the expansion of pancreatic progenitors. This work therefore uncovers a central role for TEAD and YAP as signal-responsive regulators of multipotent pancreatic progenitors, and provides a resource for the study of embryonic development of the human pancreas

    Notch Signaling Regulates Bile Duct Morphogenesis in Mice

    Get PDF
    BACKGROUND: Alagille syndrome is a developmental disorder caused predominantly by mutations in the Jagged1 (JAG1) gene, which encodes a ligand for Notch family receptors. A characteristic feature of Alagille syndrome is intrahepatic bile duct paucity. We described previously that mice doubly heterozygous for Jag1 and Notch2 mutations are an excellent model for Alagille syndrome. However, our previous study did not establish whether bile duct paucity in Jag1/Notch2 double heterozygous mice resulted from impaired differentiation of bile duct precursor cells, or from defects in bile duct morphogenesis. METHODOLOGY/PRINCIPAL FINDINGS: Here we characterize embryonic biliary tract formation in our previously described Jag1/Notch2 double heterozygous Alagille syndrome model, and describe another mouse model of bile duct paucity resulting from liver-specific deletion of the Notch2 gene. CONCLUSIONS/SIGNIFICANCE: Our data support a model in which bile duct paucity in Notch pathway loss of function mutant mice results from defects in bile duct morphogenesis rather than cell fate specification

    liver-enriched gene 1a and 1b Encode Novel Secretory Proteins Essential for Normal Liver Development in Zebrafish

    Get PDF
    liver-enriched gene 1 (leg1) is a liver-enriched gene in zebrafish and encodes a novel protein. Our preliminary data suggested that Leg1 is probably involved in early liver development. However, no detailed characterization of Leg1 has been reported thus far. We undertook both bioinformatic and experimental approaches to study leg1 gene structure and its role in early liver development. We found that Leg1 identifies a new conserved protein superfamily featured by the presence of domain of unknown function 781 (DUF781). There are two copies of leg1 in zebrafish, namely leg1a and leg1b. Both leg1a and leg1b are expressed in the larvae and adult liver with leg1a being the predominant form. Knockdown of Leg1a or Leg1b by their respective morpholinos specifically targeting their 5′-UTR each resulted in a small liver phenotype, demonstrating that both Leg1a and Leg1b are important for early liver development. Meanwhile, we found that injection of leg1-ATGMO, a morpholino which can simultaneously block the translation of Leg1a and Leg1b, caused not only a small liver phenotype but hypoplastic exocrine pancreas and intestinal tube as well. Further examination of leg1-ATGMO morphants with early endoderm markers and early hepatic markers revealed that although depletion of total Leg1 does not alter the hepatic and pancreatic fate of the endoderm cells, it leads to cell cycle arrest that results in growth retardation of liver, exocrine pancreas and intestine. Finally, we proved that Leg1 is a secretory protein. This intrigued us to propose that Leg1 might act as a novel secreted regulator that is essential for liver and other digestive organ development in zebrafish

    New Approaches in the Differentiation of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells toward Hepatocytes

    Get PDF
    Orthotropic liver transplantation is the only established treatment for end-stage liver diseases. Utilization of hepatocyte transplantation and bio-artificial liver devices as alternative therapeutic approaches requires an unlimited source of hepatocytes. Stem cells, especially embryonic stem cells, possessing the ability to produce functional hepatocytes for clinical applications and drug development, may provide the answer to this problem. New discoveries in the mechanisms of liver development and the emergence of induced pluripotent stem cells in 2006 have provided novel insights into hepatocyte differentiation and the use of stem cells for therapeutic applications. This review is aimed towards providing scientists and physicians with the latest advancements in this rapidly progressing field

    The stress of starvation: glucocorticoid restraint of beta cell development

    Get PDF
    Developmental insults during gestation, such as under-nutrition, are known to restrict the number of beta cells that form in the fetal pancreas and are maintained in adulthood, leading to increased risk of type 2 diabetes. There are now substantial data indicating that glucocorticoids mediate this effect of under-nutrition on beta cell mass and that even at physiological levels they restrain fetal beta cell development in utero. There are emerging clues that this occurs downstream of endocrine commitment by neurogenin 3 but prior to terminal beta cell differentiation. Deciphering the precise mechanism will be important as it might unveil new pathways by which to manipulate beta cell mass that could be exploited as novel therapies for patients with diabetes

    The RSPO–LGR4/5–ZNRF3/RNF43 module controls liver zonation and size

    Get PDF
    LGR4/5 receptors and their cognate RSPO ligands potentiate Wnt/β-catenin signalling and promote proliferation and tissue homeostasis in epithelial stem cell compartments. In the liver, metabolic zonation requires a Wnt/β-catenin signalling gradient, but the instructive mechanism controlling its spatiotemporal regulation is not known. We have now identified the RSPO-LGR4/5-ZNRF3/RNF43 module as a master regulator of Wnt/β-catenin-mediated metabolic liver zonation. Liver-specific LGR4/5 loss of function (LOF) or RSPO blockade disrupted hepatic Wnt/β-catenin signalling and zonation. Conversely, pathway activation in ZNRF3/RNF43 LOF mice or with recombinant RSPO1 protein expanded the hepatic Wnt/β-catenin signalling gradient in a reversible and LGR4/5-dependent manner. Recombinant RSPO1 protein increased liver size and improved liver regeneration, whereas LGR4/5 LOF caused the opposite effects, resulting in hypoplastic livers. Furthermore, we show that LGR4(+) hepatocytes throughout the lobule contribute to liver homeostasis without zonal dominance. Taken together, our results indicate that the RSPO-LGR4/5-ZNRF3/RNF43 module controls metabolic liver zonation and is a hepatic growth/size rheostat during development, homeostasis and regeneration
    corecore