614 research outputs found

    The Non-local Kardar-Parisi-Zhang Equation With Spatially Correlated Noise

    Get PDF
    The effects of spatially correlated noise on a phenomenological equation equivalent to a non-local version of the Kardar-Parisi-Zhang equation are studied via the dynamic renormalization group (DRG) techniques. The correlated noise coupled with the long ranged nature of interactions prove the existence of different phases in different regimes, giving rise to a range of roughness exponents defined by their corresponding critical dimensions. Finally self-consistent mode analysis is employed to compare the non-KPZ exponents obtained as a result of the long range -long range interactions with the DRG results.Comment: Plain Latex, 10 pages, 2 figures in one ps fil

    Experimental research on kinematics of breaking waves

    Get PDF
    One important kinematic properties of breaking waves is the wave celerity. Constant wave celerity has been used for the wave breaking criterion by many researchers. However, this approach does not consider the variation of wave celerity at different phases before breaking. Hence, this article examines the aspects of the wave breaking criterion and dynamics of wave celerity before wave breaking. Breaking waves were generated using the JONSWAP focused spectrum and a semi-empirical formula for the wave celerity estimation was established

    A Novel Application for Real-time Arrhythmia Detection using YOLOv8

    Full text link
    In recent years, there has been an increasing need to reduce healthcare costs in remote monitoring of cardiovascular health. Detecting and classifying cardiac arrhythmia is critical to diagnosing patients with cardiac abnormalities. This paper shows that complex systems such as electrocardiograms (ECG) can be applicable for at-home monitoring. This paper proposes a novel application for arrhythmia detection using the state-of-the-art You-Only-Look-Once (YOLO)v8 algorithm to classify single-lead ECG signals. We proposed a loss-modified YOLOv8 model that was fine-tuned on the MIT-BIH arrhythmia dataset to detect to allow real-time continuous monitoring. Results show that our model can detect arrhythmia with an average accuracy of 99.5% and 0.992 mAP@50 with a detection time of 0.002s on an NVIDIA Tesla V100. Our study demonstrated the potential of real-time arrhythmia detection, where the model output can be visually interpreted for at-home users. Furthermore, this study could be extended into a real-time XAI model, deployed in the healthcare industry, and significantly advancing healthcare needs

    Ideal and Counter-Ideal Value Congruence

    Get PDF
    Research on value congruence rests on the assumption that values denote desirable behaviors and ideals that employees and organizations strive to approach. In the present study, we develop and test the argument that a more complete understanding of value congruence can be achieved by considering a second type of congruence based on employees’ and organizations’ counter-ideal values (i.e., what both seek to avoid). We examined this proposition in a time-lagged study of 672 employees from various occupational and organizational backgrounds. We used difference scores as well as polynomial regression and response surface analyses to test our hypotheses. Consistent with our hypotheses, results reveal that counter-ideal value congruence has unique relations to employees’ trust in the organization that go beyond the effects of ideal value congruence. We discuss theoretical and practical implications of this expanded perspective on value congruence

    MicroRNAs in pulmonary arterial remodeling

    Get PDF
    Pulmonary arterial remodeling is a presently irreversible pathologic hallmark of pulmonary arterial hypertension (PAH). This complex disease involves pathogenic dysregulation of all cell types within the small pulmonary arteries contributing to vascular remodeling leading to intimal lesions, resulting in elevated pulmonary vascular resistance and right heart dysfunction. Mutations within the bone morphogenetic protein receptor 2 gene, leading to dysregulated proliferation of pulmonary artery smooth muscle cells, have been identified as being responsible for heritable PAH. Indeed, the disease is characterized by excessive cellular proliferation and resistance to apoptosis of smooth muscle and endothelial cells. Significant gene dysregulation at the transcriptional and signaling level has been identified. MicroRNAs are small non-coding RNA molecules that negatively regulate gene expression and have the ability to target numerous genes, therefore potentially controlling a host of gene regulatory and signaling pathways. The major role of miRNAs in pulmonary arterial remodeling is still relatively unknown although research data is emerging apace. Modulation of miRNAs represents a possible therapeutic target for altering the remodeling phenotype in the pulmonary vasculature. This review will focus on the role of miRNAs in regulating smooth muscle and endothelial cell phenotypes and their influence on pulmonary remodeling in the setting of PAH

    Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications.

    Get PDF
    Analysis of DNA methylation patterns relies increasingly on sequencing-based profiling methods. The four most frequently used sequencing-based technologies are the bisulfite-based methods MethylC-seq and reduced representation bisulfite sequencing (RRBS), and the enrichment-based techniques methylated DNA immunoprecipitation sequencing (MeDIP-seq) and methylated DNA binding domain sequencing (MBD-seq). We applied all four methods to biological replicates of human embryonic stem cells to assess their genome-wide CpG coverage, resolution, cost, concordance and the influence of CpG density and genomic context. The methylation levels assessed by the two bisulfite methods were concordant (their difference did not exceed a given threshold) for 82% for CpGs and 99% of the non-CpG cytosines. Using binary methylation calls, the two enrichment methods were 99% concordant and regions assessed by all four methods were 97% concordant. We combined MeDIP-seq with methylation-sensitive restriction enzyme (MRE-seq) sequencing for comprehensive methylome coverage at lower cost. This, along with RNA-seq and ChIP-seq of the ES cells enabled us to detect regions with allele-specific epigenetic states, identifying most known imprinted regions and new loci with monoallelic epigenetic marks and monoallelic expression

    MicroRNAs Dynamically Remodel Gastrointestinal Smooth Muscle Cells

    Get PDF
    Smooth muscle cells (SMCs) express a unique set of microRNAs (miRNAs) which regulate and maintain the differentiation state of SMCs. The goal of this study was to investigate the role of miRNAs during the development of gastrointestinal (GI) SMCs in a transgenic animal model. We generated SMC-specific Dicer null animals that express the reporter, green fluorescence protein, in a SMC-specific manner. SMC-specific knockout of Dicer prevented SMC miRNA biogenesis, causing dramatic changes in phenotype, function, and global gene expression in SMCs: the mutant mice developed severe dilation of the intestinal tract associated with the thinning and destruction of the smooth muscle (SM) layers; contractile motility in the mutant intestine was dramatically decreased; and SM contractile genes and transcriptional regulators were extensively down-regulated in the mutant SMCs. Profiling and bioinformatic analyses showed that SMC phenotype is regulated by a complex network of positive and negative feedback by SMC miRNAs, serum response factor (SRF), and other transcriptional factors. Taken together, our data suggest that SMC miRNAs are required for the development and survival of SMCs in the GI tract

    Measuring and Valuing Health-Related Quality of Life among Children and Adolescents in Mainland China - A Pilot Study

    Get PDF
    Background: The Child Health Utility 9D (CHU9D), a new generic preference-based health-related quality of life (HRQoL) instrument, has been validated for use in young people in both the UK and Australia. The main objectives of this study were to examine the feasibility of using a Chinese version of the CHU9D (CHU9D-CHN) to assess HRQoL and to investigate the association of physical activity, homework hours and sleep duration with HRQoL in children and adolescents in Mainland China. Methods: Data were collected using a multi-stage sampling method from grades 4–12 students in May 2013 in Nanjing, China. Consenting participants (N = 815) completed a self-administered questionnaire including the CHU9D-CHN instrument and information on physical activity, homework and sleep duration, self-reported health status, and socio-demographic characteristics. Descriptive and multivariate linear regression analyses were undertaken. CHU9D-CHN utility scores were generated by employing two scoring algorithms currently available for the instrument, the first derived from UK adults utilising the standard gamble (SG) valuation method and the second derived from Australian adolescents utilising the bestworst scaling (BWS) method. Results: It was found that CHU9D utility scores discriminated well in relation to self-reported health status and that better health status was significantly associated with higher utility scores regardless of which scoring algorithm was employed (both p,0.001). The adjusted mean utilities were significantly higher for physically active than inactive students (0.023 by SG, 0.029 by BWS scoring methods, p,0.05). An additional hour of doing homework and sleep duration were, separately, associated with mean utilities of 20.019 and 0.032 based on SG, and 20.021 and 0.040 according to BWS scoring algorithms (p,0.01). Conclusion: The CHU9D-CHN shows promise for measuring and valuing the HRQoL of children and adolescents in China. Levels of self-reported physical activity, homework and sleep time were important influencers of utility scores
    • …
    corecore