6,841 research outputs found

    The Wavelet-Based Cluster Analysis for Temporal Gene Expression Data

    Get PDF
    A variety of high-throughput methods have made it possible to generate detailed temporal expression data for a single gene or large numbers of genes. Common methods for analysis of these large data sets can be problematic. One challenge is the comparison of temporal expression data obtained from different growth conditions where the patterns of expression may be shifted in time. We propose the use of wavelet analysis to transform the data obtained under different growth conditions to permit comparison of expression patterns from experiments that have time shifts or delays. We demonstrate this approach using detailed temporal data for a single bacterial gene obtained under 72 different growth conditions. This general strategy can be applied in the analysis of data sets of thousands of genes under different conditions

    Microstructural damage of the posterior corpus callosum contributes to the clinical severity of neglect

    Get PDF
    One theory to account for neglect symptoms in patients with right focal damage invokes a release of inhibition of the right parietal cortex over the left parieto-frontal circuits, by disconnection mechanism. This theory is supported by transcranial magnetic stimulation studies showing the existence of asymmetric inhibitory interactions between the left and right posterior parietal cortex, with a right hemispheric advantage. These inhibitory mechanisms are mediated by direct transcallosal projections located in the posterior portions of the corpus callosum. The current study, using diffusion imaging and tract-based spatial statistics (TBSS), aims at assessing, in a data-driven fashion, the contribution of structural disconnection between hemispheres in determining the presence and severity of neglect. Eleven patients with right acute stroke and 11 healthy matched controls underwent MRI at 3T, including diffusion imaging, and T1-weighted volumes. TBSS was modified to account for the presence of the lesion and used to assess the presence and extension of changes in diffusion indices of microscopic white matter integrity in the left hemisphere of patients compared to controls, and to investigate, by correlation analysis, whether this damage might account for the presence and severity of patients' neglect, as assessed by the Behavioural Inattention Test (BIT). None of the patients had any macroscopic abnormality in the left hemisphere; however, 3 cases were discarded due to image artefacts in the MRI data. Conversely, TBSS analysis revealed widespread changes in diffusion indices in most of their left hemisphere tracts, with a predominant involvement of the corpus callosum and its projections on the parietal white matter. A region of association between patients' scores at BIT and brain FA values was found in the posterior part of the corpus callosum. This study strongly supports the hypothesis of a major role of structural disconnection between the right and left parietal cortex in determining 'neglect'

    细胞膜钾离子通道感抗特性研究

    Get PDF
    2002-2003 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Impact of visceral fat on skeletal muscle mass and vice versa in a prospective cohort study: The Korean Sarcopenic Obesity Study (KSOS)

    Get PDF
    Objectives: Sarcopenia and visceral obesity have been suggested to aggravate each other, resulting in a vicious cycle. However, evidence based on prospective study is very limited. Our purpose was to investigate whether visceral fat promotes a decrease in skeletal muscle mass and vice versa. Methods: We observed changes in anthropometric and body composition data during a follow-up period of 27.6±2.8 months in 379 Korean men and women (mean age 51.9±14.6 years) from the Korean Sarcopenic Obesity Study (KSOS). Appendicular lean soft tissue (ALST) mass was calculated using dual-energy X-ray absorptiometry, and visceral fat area (VFA) was measured using computed tomography at baseline and follow-up examination. Results: ALST mass significantly decreased, whereas trunk and total fat mass increased in both men and women despite no significant change in weight and body mass index. In particular, women with visceral obesity at baseline had a greater decrease in ALST mass than those without visceral obesity (P=0.001). In multiple linear regression analysis, baseline VFA was an independent negative predictor of the changes in ALST after adjusting for confounding factors including age, gender, life style and body composition parameters, insulin resistance, high sensitivity C-reactive protein and vitamin D levels (P=0.001), whereas the association between baseline ALST mass and changes in VFA was not statistically significant (P=0.555). Conclusions: This longitudinal study showed that visceral obesity was associated with future loss of skeletal muscle mass in Korean adults. These results may provide novel insight into sarcopenic obesity in an aging society

    Calmodulin-like proteins localized to the conoid regulate motility and cell invasion by Toxoplasma gondii

    Get PDF
    Toxoplasma gondii contains an expanded number of calmodulin (CaM)-like proteins whose functions are poorly understood. Using a combination of CRISPR/Cas9-mediated gene editing and a plant-like auxin-induced degron (AID) system, we examined the roles of three apically localized CaMs. CaM1 and CaM2 were individually dispensable, but loss of both resulted in a synthetic lethal phenotype. CaM3 was refractory to deletion, suggesting it is essential. Consistent with this prediction auxin-induced degradation of CaM3 blocked growth. Phenotypic analysis revealed that all three CaMs contribute to parasite motility, invasion, and egress from host cells, and that they act downstream of microneme and rhoptry secretion. Super-resolution microscopy localized all three CaMs to the conoid where they overlap with myosin H (MyoH), a motor protein that is required for invasion. Biotinylation using BirA fusions with the CaMs labeled a number of apical proteins including MyoH and its light chain MLC7, suggesting they may interact. Consistent with this hypothesis, disruption of MyoH led to degradation of CaM3, or redistribution of CaM1 and CaM2. Collectively, our findings suggest these CaMs may interact with MyoH to control motility and cell invasion

    Computational Validation of Injection Molding Tooling by Additive Layer Manufacture to Produce EPDM Exterior Automotive Seals

    Get PDF
    During the design and development of ethylene propylene diene monomer (EPDM) exterior automotive seals, prototype components can only manufactured through production tooling platforms by either injection molding or extrusion. Consequently, tooling is expensive and has long lead times. This paper investigates whether additive layer manufacture is a viable method for producing tooling used in injection molding of exterior automotive seals in EPDM. Specifically, a novel rapid tooling is a method that combines additive layer manufacture (ALM) with epoxy reinforcement. Computational validation is performed whereby the mechanical properties of the tool are evaluated. The research has concluded that the novel tooling configuration would be suitable for prototyping purposes which would drastically reduce both costly and environmentally detrimental pre-manufacturing processes. This work has laid the foundations to implement rapid tooling technology to the injection molding of prototype EPDM parts

    Common genetic variants of the ion channel transient receptor potential membrane melastatin 6 and 7 (TRPM6 and TRPM7), magnesium intake, and risk of type 2 diabetes in women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ion channel transient receptor potential membrane melastatin 6 and 7 (TRPM6 and TRPM7) play a central role in magnesium homeostasis, which is critical for maintaining glucose and insulin metabolism. However, it is unclear whether common genetic variation in <it>TRPM6 </it>and <it>TRPM7 </it>contributes to risk of type 2 diabetes.</p> <p>Methods</p> <p>We conducted a nested case-control study in the Women's Health Study. During a median of 10 years of follow-up, 359 incident diabetes cases were diagnosed and matched by age and ethnicity with 359 controls. We analyzed 20 haplotype-tagging single nucleotide polymorphisms (SNPs) in <it>TRPM6 </it>and 5 common SNPs in <it>TRPM7 </it>for their association with diabetes risk.</p> <p>Results</p> <p>Overall, there was no robust and significant association between any single SNP and diabetes risk. Neither was there any evidence of association between common <it>TRPM6 </it>and <it>TRPM7 </it>haplotypes and diabetes risk. Our haplotype analyses suggested a significant risk of type 2 diabetes among carriers of both the rare alleles from two non-synomous SNPs in <it>TRPM6 </it>(Val1393Ile in exon 26 [rs3750425] and Lys1584Glu in exon 27 [rs2274924]) when their magnesium intake was lower than 250 mg per day. Compared with non-carriers, women who were carriers of the haplotype 1393Ile-1584Glu had an increased risk of type 2 diabetes (OR, 4.92, 95% CI, 1.05–23.0) only when they had low magnesium intake (<250 mg/day).</p> <p>Conclusion</p> <p>Our results provide suggestive evidence that two common non-synonymous <it>TRPM6 </it>coding region variants, Ile1393Val and Lys1584Glu polymorphisms, might confer susceptibility to type 2 diabetes in women with low magnesium intake. Further replication in large-scale studies is warranted.</p

    Coalescent-based genome analyses resolve the early branches of the euarchontoglires

    Get PDF
    Despite numerous large-scale phylogenomic studies, certain parts of the mammalian tree are extraordinarily difficult to resolve. We used the coding regions from 19 completely sequenced genomes to study the relationships within the super-clade Euarchontoglires (Primates, Rodentia, Lagomorpha, Dermoptera and Scandentia) because the placement of Scandentia within this clade is controversial. The difficulty in resolving this issue is due to the short time spans between the early divergences of Euarchontoglires, which may cause incongruent gene trees. The conflict in the data can be depicted by network analyses and the contentious relationships are best reconstructed by coalescent-based analyses. This method is expected to be superior to analyses of concatenated data in reconstructing a species tree from numerous gene trees. The total concatenated dataset used to study the relationships in this group comprises 5,875 protein-coding genes (9,799,170 nucleotides) from all orders except Dermoptera (flying lemurs). Reconstruction of the species tree from 1,006 gene trees using coalescent models placed Scandentia as sister group to the primates, which is in agreement with maximum likelihood analyses of concatenated nucleotide sequence data. Additionally, both analytical approaches favoured the Tarsier to be sister taxon to Anthropoidea, thus belonging to the Haplorrhine clade. When divergence times are short such as in radiations over periods of a few million years, even genome scale analyses struggle to resolve phylogenetic relationships. On these short branches processes such as incomplete lineage sorting and possibly hybridization occur and make it preferable to base phylogenomic analyses on coalescent methods
    corecore