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Abstract. During the design and development of Ethylene Propylene Diene Monomer (EPDM) 
exterior automotive seals prototype components can only manufactured through production tool-
ing platforms by either injection molding or extrusion. Conse-quently, tooling is expensive and 
has long lead times. This paper investigates whether additive layer manufacture is a viable 
method for producing tooling used in injection molding of exterior automotive seals in EPDM. 
Specifically, a novel rapid tooling method that combines Additive Layer Manufacture (ALM) 
with epoxy reinforcement. Computational validation is performed whereby the mechanical prop-
erties of the tool are evaluated. The research has concluded that the novel tooling configuration 

would be suitable for prototyping purposes which would drastically reduce both costly and envi-
ronmentally detrimental pre-manufacturing processes. This work has laid the foun-dations to im-
plement rapid tooling technology to the injection molding of prototype EPDM parts.  
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1 Introduction 

1.1 EPDM Tooling Platforms 

 
During product development it is necessary to manufacture production parts for vali-

dation and testing. Vehicle exterior seals are made from EPDM and currently, injection 

molding and extrusion is their only viable manufacturing method. Tooling for injection 

molding is traditionally machined from steel which have high costs and lead times, 

typically with lead times of 16-26 weeks for tooling for injection molding of EPDM 

exterior seals. EPDM is a very viscous material which requires high mold pressure dur-

ing injection molding. Part design is often modified during product development which 

results in scraping or expensive modification cost of tooling.  

Currently polyurethane (PU) prototype parts are producible however the resulting 

material properties do not fully align with EPDM which limits their application for 

prototyping purposes. Additive Layer Manufacture (ALM), also known as rapid proto-
typing (RP) or 3D printing, is capable of producing 3D geometries. However, for the 

application within this study the process could be used to produce tooling opposed to 

the final component which is the traditional utilization of 3D printing. 

There are seven main categories that ALM techniques fall under; stereolithography, 

digital light processing, selective laser sintering, fused deposition modelling, laminated 
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object manufacture, material jetting and binder jetting. Under each of these seven cat-

egories there are numerous variations, each with their own advantages and disad-

vantages. Material properties, part size, accuracy, surface finish and cost are some of 

the parameters that needs to be considered when selecting the additive layer manufac-

turing technique to be used [1-3].  

Rapid tooling is the term used to describe the process of producing tooling using 

ALM, either creating the tool directly or creating a master model from which the tool 
is created, categorizing rapid tooling into direct and indirect [4-6]. Utilizing rapid tool-

ing can reduce the lead time and significantly reduce cost when compared to traditional 

machining. During product development stage when time is at a premium rapid tooling 

offers a prominent alternative to traditional machining of injection molding tooling. 

Design changes are easier to accommodate when using rapid tooling allowing for 

quicker part improvements and consequentially reducing product lead time [4-6].  

This paper investigates whether additive layer manufacture is a viable method for 

producing tooling used in injection molding of exterior automotive seals in EPDM. 

Specifically, a novel rapid tooling method that combines metal powder and epoxy, 

which uses ALM methods of selective laser sintering or binder jetting. Computational 

validation will be performed on ANSYS 19.1 software where the mechanical and ther-

mal properties of the tool will be evaluated. A topological tool design will be proposed 
that has adequate mechanical strength and thermal properties. 

 

2 State-of-the-art 

Utilizing rapid tooling can greatly reduce the manufacturing cost and lead time for tool 

production [5, 7-11]. Tool material, accuracy, surface finish, and mold life are some 

limitations of rapid tooling [7, 11-13]. Accuracy, thermal conductivity, and mechanical 

properties of the tool have a significant influence on injection molding cycle, part qual-

ity and geometric complexity [14, 15].  

Computer aided evaluation for rapid tooling process selection and manufacturability 

for injection molding has been presented by Nagahanumaiah [7]. A methodology com-

promising of three major steps; rapid tooling process selection, manufacturability eval-

uation, and mold cost estimation has been developed [7]. In addition, an integrated 

quality function deployment (QFD) and analytic hierarchy process (AHP) method were 

implemented in a visual C++. The resulting computer aided evaluation aids in the se-

lection of the most appropriate rapid tooling in addition to providing costing models 

[7].  

Au et al., have performed CAE and CFD validation on rapid tooling for injection 

molding of plastic [16]. Also, in an investigation by Rahmati et al., metal filled stereo-

lithography (SLA) rapid tooling cavity inserts were developed [17]. In particular, SLA 

is used to fabricate epoxy insert shells directly from CAD data which were then fitted 

into steel frames and reinforced with aluminum powder and epoxy resin mixture [17]. 

The research concluded that Moldflow Plastic Insight can be used to identify the opti-

mal cooling system for the rapid tooling and COMSOS/Works can be used to evaluate 

the mechanical properties between solid and scaffolding assembly [17]. 
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Structural analysis of a rapid prototype tooling made from photopolymer with stere-

olithography has been conducted by Huamin Zhou et al., [9]. The study predicted the 

deformation that occurs in the final part created in the rapid prototype tooling due to 

the thermal and mechanical loads of the filling process.  

Stereolithography injection molding tooling experimental data was generated by Hi-

masekhar et al., [15]. The data was used to evaluate the performance of the rapid pro-

totype tool with regards to the distortion in each axis and the twist in the formed part. 
The validation results from the computational model were within 15% to the ex-peri-

mental data for each measurement. In addition, the research also highlighted the im-

portance of the tooling material thermal conductivity to ensure a quality part is cre-ated 

[15].  

Three dimensional non-linear coupled thermo-mechanical finite element method 

(FEM) model has been developed by Song et al., to analyze the dimensional accuracy 

for casting dies using rapid tooling molds [10]. The FEM analysis is non-linear due to 

three main attributes; the material, geometry, and boundary conditions. In the study it 

was found that convergence criterion and time steps directly influence the computa-

tional accuracy of the FEM model. Within the study it was found that the simulated 

shrinkage ratio of the part casted in the rapid tooling mold was 1.108% which compares 
closely to the experimental shrinkage ratio of 1.158% [10].  

This study will investigate whether a novel rapid tooling platform produced through 

additive layer manufacture is a viable method for the application of exterior automotive 

seals in EPDM. Specifically, computational validation a rapid tool that combines metal 

powder and epoxy, which uses ALM methods of selective laser sintering. Computa-

tional validation will be performed where the mechanical properties of the tool will be 

evaluated. 

3 Methodology 

3.1 Novel ALM rapid tooling 

In this study a novel rapid tooling concept is proposed whereby a shell produced 

through ALM is reinforced with an epoxy. Combining both ALM and epoxy rapid tool-

ing will deliver a unique tooling platform that must initially be validated through com-

putational simulation to inform the design constraints. In particular, the mechanical re-
quirements.  

Figure 1 illustrates the manufacturing route for the proposed rapid tooling techniques 

to manufacture tooling for the application of injection molding. In particular, initially 

the shell will be produced via ALM to produce a near net insert (table 1). Following 

this a high temperature RS-2243 epoxy is then poured into the tool to act as reinforce-

ment. The geometry used within the investigation corresponds to the current tooling 

format used within the production of EPDM automotive door seals. 
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Figure 1. Process route to produce rapid tooling 

The injection molding parameters used within the investigation are summarized in Ta-

ble 1. 

 

Table 1. Typical parameters for injection moulding of EPDM exterior automotive seals. 

 

Parameter Value 

Injection Pressure 1400bar (140MPa) 

Clamping Pressure 2000bar (200MPa) 

Temperature of Melt 125°C 

Temperature of Plate 200°C 

Vulcanisation Time 85s 

Melt Material EPDM Dense 60 shore A 

 
Computational Model - Mechanical simulations will be performed by ANSYS static 

structural system. Static structural system is chosen over the transient structural system 

due to the steady state nature of the application. A constant pressure of 140MPa will be 

applied at the fluid interaction face to represent the injection pressure. Fixed geometry 

will be applied to faces which are in contact with other parts of the tool. Figure 2 shows 

the physical set up of the mechanical simulation which includes a pres-sure and fixed 

geometries.  

Contact setting between the two components of the part, the shell and reinforcement, 

in the computational model is set to bonded. Analysis setting will be set to run for 1s 

with 10-time steps. Mesh sensitivity tests will be run to evaluate appropriateness of 

mesh characteristic to the application. 
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Figure 2 – Mechanical Model Setup 

To investigate the effect of using different ALM materials analysis was carried out on 

Titanium, Aluminum and Stainless Steel. The properties are displayed in Table 2. In 
addition, all results from the ALM inserts were compared to a conventional P20 tool 

steel insert.  

 

Table 2. Material and their properties to be used in computational simulations. 

 
For the subsequent simulations, shell thickness, shell material, and reinforcement are 

independent parameters, whilst displacement and stress will be the dependent parame-

ters. Shell thicknesses will vary between 2mm and 12mm. 
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4 Results and Discussion 

4.1 Mesh Sensitivity Analysis 

Mesh sensitivity analysis for the mechanical simulations were performed on the 
benchmark tool, which is a solid part made from P20 grade steel. In particular, the mesh 

sensitivity analysis compared maximum and average displacement and stress, and com-

putational time against the number of elements for a linear and quadratic type mesh is 

displayed in figure 3.  

The results conclude that a mesh which has 117000 elements produces converged 

results for both the displacement and stress simulations, irrespective of the mesh type 

used. Computational time for the linear mesh is less however when analyzing at the 

converged maximum stress results, the linear mesh results is 35% smaller than for the 

quadratic mesh which is a significant deviation in results. Therefore, a quadratic mesh 

type is found to be more accurate. 

 

 
Figure 3 Mesh sensitivity analysis, comparing (a) maximum and average displace-

ment, (b) maximum and average stress, and (c) computational time against number of 

elements for linear and quadratic type mesh. 
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4.2 Displacement 

Figure 4 displays the maximum displacement of inserts manufactured with different 

shell thicknesses, materials, and with or without reinforcement. As can be seen in figure 

4 there is a large difference in maximum displacement between parts with and without 

reinforcement material. With the 2mm thick aluminum shell the maximum displace-

ment is 17.8 times larger in the part without reinforcement compared to the part which 

had reinforcement. As the shell thickness increases, there is a reduction in the difference 

in maximum displacement between parts with and without reinforcement. However, 

the part with reinforcement always has the smaller maximum displacement compared 

to the same part without reinforcement. This is due to the mechanical strength that the 

reinforcement adds the part. The results conclude that maximum displacement levels 

only increases marginally after a shell thickness of 6mm has been reached.  

 

 
Figure 4. Maximum displacement 

4.3 Stress 

Figure 5 displays the maximum stress of parts with different thicknesses, materials, 

and with or without reinforcement. As seen in figure 5 the stress results follow the same 

trends as the displacement results in figure 4. ALM parts which have reinforcement 

have considerably lower maximum stress when compared to parts which have no rein-

forcement. It is also seen that the maximum stress in the parts decrease with an increase 

in shell thickness. 

 
Figure 5. Maximum stress 
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Comparing the ALM and benchmark parts we see very similar maximum stress in parts 

with shell thickness of 10mm or more regardless of material. To facilitate deeper anal-

ysis the maximum stress has been compared with the material UTS, which is shown in 

figure 6. 

 
Figure 6. Maximum stress compared to UTS 

 

As expected, the percentage of nodes with stress greater than its materials UTS de-

creases with an increase in shell thickness, and with the inclusion of reinforcement. 

Also as displayed in figure 6, the titanium shell rapid prototype tooling performs best, 

having significantly less nodes with stress over its material UTS compared to the alu-

minum and stainless-steel rapid prototype tooling. There was no exceeding of UTS 

stress witnessed in the titanium shell over 5mm thick with reinforcement and stain-

less-steel shell over 10mm thick with reinforcement. Furthermore, the results con-

clude that maximum displacement levels only increases marginally after a shell thick-

ness of 6mm has been reached.  

From the results it can be concluded that ALM parts with shell thickness greater than 

6mm without reinforcement would also be suitable for prototype manufacture of EPDM 

parts using injection molding. When using a reinforced epoxy an optimum wall thick-

ness was found to be 6mm.  

5 Conclusion  

A novel rapid tooling methodology has been proposed which combines metal pow-der 

and epoxy rapid tooling techniques. Computational validation has been performed on 

ANSYS 19.1 software to validate the suitability of the novel rapid tooling method-

ology to manufacture tooling for injection molding of EPDM exterior automotive seals. 

The main conclusions from the research are: 

- Rapid prototype tooling produced by the proposed novel rapid tooling method 

are sufficient for prototype manufacture of EPDM parts by injection moulding.  

- Tooling inserts produced from titanium showed the best performance. In partic-

ular, the research concludes that when using reinforcement a 6mm wall is opti-

mal. 

- Mechanical properties of rapid prototype tooling 2mm thick shell with rein-

forcement and 8mm thick shell without reinforcement are similar. Compared to 

the benchmark, both have similar stress results but much higher displacement 

results.  
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6 Future Work 

The Experimental testing is needed to validate the computational simulation findings. 

The characteristics of the bond between the shell and reinforcement need to be quanti-

fied. Evaluation of alternative material for the reinforcement is needed to optimize the 

rapid prototype tooling. Further research could evaluate the suitability of using a fluid 

as the reinforcement as it is incompressible. 

 

References  
 

1. Yan X, Gu P. A review of rapid prototyping technologies and systems. CAD 

Computer Aided Design. 1996 

2. Pham DT, Dimov SS. Rapid manufacturing: the technologies and applications 

of rapid prototyping and rapid tooling. Rapid Manufacturing. Springer-Verlag 

London; 2001. 

3. Gurr M, Mülhaupt R. Rapid Prototyping. Ref Modul Mater Sci Mater Eng. 

2016 

4. Rosochowski A, Matuszak A. Rapid tooling: the state of the art. J Mater Pro-

cess Technol. 2000;106(1–3):191–8. 

5. Chua CK, Chou SM, Wong TS. Rapid prototyping technologies and limita-

tions. Int J Adv Manuf Technol. 1998;14:146–52 

6. Kruth J-PP, Leu MCC, Nakagawa T. Progress in additive manufacturing and 

rapid prototyping. CIRP Ann - Manuf Technol. 1998;47(2):525–40. 

7. Nagahanumaiah, Subburaj K, Ravi B. Computer aided rapid tooling process 

selection and manufacturability evaluation for injection mold development. 

Comput Ind. 2008 Mar 1;59(2–3):262–76. 

8. Levy GN, Schindel R, Kruth JP. Rapid manufacturing and rapid tooling with 

layer manufacturing (LM) technologies, state of the art and future perspec-

tives. CIRP Ann - Manuf Technol. 2003;52(2):589–609. 

9. Zhou H, Li D. Integrated simulation of the injection molding process with ste-

reolithography molds. Int J Adv Manuf Technol. 2006;28:53–60. 

10. Song Y, Yan Y, Zhang R, Lu Q, Xu D. Three dimensional non-linear coupled 

thermo-mechanical FEM analysis of the dimensional accuracy for casting dies 

in rapid tooling. Finite Elem Anal Des. 2001 Dec 1;38(1):79–91. 

11. Hague RJM. Unlocking the design potential of rapid manufacturing. Rapid 

manufacturing: An industrial revolution of the digital age. 2006. 

12. Sood AK, Ohdar RK, Mahapatra SS. Improving dimensional accuracy of 

fused deposition modelling processed part using grey Taguchi method. Mater 

Des. 2009;30(10):4243–52. 

13. Saqib S, Urbanic J. An experimental study to determine geometric and dimen-

sional accuracy impact factors for fused deposition modelled parts: Enabling 

manufacturing competitiveness and economic sustainability. Berlin Heidel-

berg: Springer; 2012. 293–298. 

14. Iyer N, Ramani K. A study of localized shrinkage in injection molding with 

high thermal conductivity molds. Inject Mould Technol. 2002;6(2):73–90. 



10 

15. Himasekhar K, Lottey J, Wang KK. CAE of mold cooling in injection mould-

ing using a three dimensional numerical simulation. J Eng Ind. 

1992;114(2):213–21. 

16. Au KM, Yu KM. A scaffolding architecture for conformal cooling design in 

rapid plastic injection moulding. Int J Adv Manuf Technol. 2007;34(5–

6):496–515. 

17. Rahmati S, Dickens P. Rapid tooling analysis of Stereolithography injection 

mould tooling. Int J Mach Tools Manuf. 2007;47(5 SPEC. ISS.):740–7. 

Tools Manuf. 2007;47(5 SPEC. ISS.):740–7. 


