289 research outputs found

    Specifying ODP computational objects in Z

    Get PDF
    The computational viewpoint contained within the Reference Model of Open Distributed Processing (RM-ODP) shows how collections of objects can be configured within a distributed system to enable interworking. It prescribes certain capabilities that such objects are expected to possess and structuring rules that apply to how these objects can be configured with one another. This paper highlights how the specification language Z can be used to formalise these capabilities and the associated structuring rules, thereby enabling specifications of ODP systems from the computational viewpoint to be achieved

    Polymorphisms of the Steroid Sulfatase [STS] Gene are Associated With Attention Deficit Hyperactivity Disorder and Influence Brain Tissue mRNA Expression

    Get PDF
    Previous studies in animals and humans have implicated the X-chromosome STS gene in the etiology of attentional difficulties and attention deficit hyperactivity disorder (ADHD). This family based association study has fine mapped a region of the STS gene across intron 1 and 2 previously associated with ADHD, in an extended sample of 450 ADHD probands and their parents. Significant association across this region is demonstrated individually with 7 of the 12 genotyped SNPs, as well as an allele specific haplotype of the 12 SNPs. The over transmitted risk allele of rs12861247 was also associated with reduced STS mRNA expression in normal human post-mortem frontal cortex brain tissue compared to the non-risk allele (P = 0.01). These results are consistent with the hypothesis arising from previous literature demonstrating that boys with deletions of the STS gene, and hence no STS protein are at a significantly increased risk of developing ADHD. Furthermore, this study has established the brain tissue transcript of STS, which except from adipose tissue, differs from that seen in all other tissues investigated. © 2010 Wiley-Liss, Inc

    Peripheral blood mononuclear cell gene expression and cytokine profiling in patients with intermittent claudication who exhibit exercise induced acute renal injury.

    Get PDF
    BACKGROUND: Intermittent claudication (IC) is a common manifestation of peripheral arterial disease. Some patients with IC experience a rise in Urinary N-acetyl-β-D-Glucosaminidase (NAG)/ Creatinine (Cr) ratio, a marker of renal injury, following exercise. In this study, we aim to investigate whether peripheral blood mononuclear cells (PBMC) from patients with IC who exhibit a rise in urinary NAG/ Cr ratio following exercise exhibit differential IL-10/ IL-12 ratio and gene expression compared to those who do not have a rise in NAG/ Cr ratio. METHODS: We conducted a single center observational cohort study of patients diagnosed with IC. Blood and urine samples were collected at rest and following a standardised treadmill exercise protocol. For comparative analysis patients were separated into those with any rise in NAG/Cr ratio (Group 1) and those with no rise in NAG/Cr ratio (Group 2) post exercise. Isolated PBMC from pre- and post-exercise blood samples were analysed using flow cytometry. PBMC were also cultured for 20 hours to perform further analysis of IL-10 and IL-12 cytokine levels. RNA-sequencing analysis was performed to identify differentially expressed genes between the groups. RESULTS: 20 patients were recruited (Group 1, n = 8; Group 2, n = 12). We observed a significantly higher IL-10/IL-12 ratio in cell supernatant from participants in Group 1, as compared to Group 2, on exercise at 20 hours incubation; 47.24 (IQR 9.70-65.83) vs 6.13 (4.88-12.24), p = 0.04. 328 genes were significantly differentially expressed between Group 1 and 2. The modulated genes had signatures encompassing hypoxia, metabolic adaptation to starvation, inflammatory activation, renal protection, and oxidative stress. DISCUSSION: Our results suggest that some patients with IC have an altered immune status making them 'vulnerable' to systemic inflammation and renal injury following exercise. We have identified a panel of genes which are differentially expressed in this group of patients

    Specifying ODP Computational Objects in Z

    Get PDF
    The computational viewpoint contained within the Reference Model of Open Distributed Processing (RM-ODP) shows how collections of objects can be configured within a distributed system to enable interworking. It prescribes certain capabilities that such objects are expected to possess and structuring rules that apply to how these objects can be configured with one another. This paper highlights how the specification language Z can be used to formalise these capabilities and the associated structuring rules, thereby enabling specifications of ODP systems from the computational viewpoint to be achieved

    Wearable neuroimaging: Combining and contrasting magnetoencephalography and electroencephalography

    Get PDF
    One of the most severe limitations of functional neuroimaging techniques, such as magnetoencephalography (MEG), is that participants must maintain a fixed head position during data acquisition. This imposes restrictions on the characteristics of the experimental cohorts that can be scanned and the experimental questions that can be addressed. For these reasons, the use of ‘wearable’ neuroimaging, in which participants can move freely during scanning, is attractive. The most successful example of wearable neuroimaging is electroencephalography (EEG), which employs lightweight and flexible instrumentation that makes it useable in almost any experimental setting. However, EEG has major technical limitations compared to MEG, and therefore the development of wearable MEG, or hybrid MEG/EEG systems, is a compelling prospect. In this paper, we combine and compare EEG and MEG measurements, the latter made using a new generation of optically-pumped magnetometers (OPMs). We show that these new second generation commercial OPMs, can be mounted on the scalp in an ‘EEG-like’ cap, enabling the acquisition of high fidelity electrophysiological measurements. We show that these sensors can be used in conjunction with conventional EEG electrodes, offering the potential for the development of hybrid MEG/EEG systems. We compare concurrently measured signals, showing that, whilst both modalities offer high quality data in stationary subjects, OPM-MEG measurements are less sensitive to artefacts produced when subjects move. Finally, we show using simulations that OPM-MEG offers a fundamentally better spatial specificity than EEG. The demonstrated technology holds the potential to revolutionise the utility of functional brain imaging, exploiting the flexibility of wearable systems to facilitate hitherto impractical experimental paradigms

    A genetic link between risk for Alzheimer's disease and severe COVID-19 outcomes via the OAS1 gene

    Get PDF
    Recently, we reported oligoadenylate synthetase 1 (OAS1) contributed to the risk of Alzheimer's disease, by its enrichment in transcriptional networks expressed by microglia. However, the function of OAS1 within microglia was not known. Using genotyping from 1313 individuals with sporadic Alzheimer's disease and 1234 control individuals, we confirm the OAS1 variant, rs1131454, is associated with increased risk for Alzheimer's disease. The same OAS1 locus has been recently associated with severe coronavirus disease 2019 (COVID-19) outcomes, linking risk for both diseases. The single nucleotide polymorphisms rs1131454(A) and rs4766676(T) are associated with Alzheimer's disease, and rs10735079(A) and rs6489867(T) are associated with severe COVID-19, where the risk alleles are linked with decreased OAS1 expression. Analysing single-cell RNA-sequencing data of myeloid cells from Alzheimer's disease and COVID-19 patients, we identify co-expression networks containing interferon (IFN)-responsive genes, including OAS1, which are significantly upregulated with age and both diseases. In human induced pluripotent stem cell-derived microglia with lowered OAS1 expression, we show exaggerated production of TNF-α with IFN-γ stimulation, indicating OAS1 is required to limit the pro-inflammatory response of myeloid cells. Collectively, our data support a link between genetic risk for Alzheimer's disease and susceptibility to critical illness with COVID-19 centred on OAS1, a finding with potential implications for future treatments of Alzheimer's disease and COVID-19, and development of biomarkers to track disease progression

    Genetic variants in glutamate, Aβ and tau related pathways determine polygenic risk for Alzheimer's disease

    Get PDF
    Synapse loss is an early event in late-onset Alzheimer's disease (LOAD). In this study we have assessed the capacity of a polygenic risk score (PRS) restricted to synapse-encoding loci to predict LOAD. We used summary statistics from the IGAP genome-wide association meta-analysis of 74,046 subjects for model construction and tested the "Synaptic PRS" in two independent datasets of controls and pathologically-confirmed LOAD. The mean Synaptic PRS was 2.3-fold higher in LOAD compared to controls (

    Genetic influences on attention deficit hyperactivity disorder symptoms from age 2 to 3: A quantitative and molecular genetic investigation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A twin study design was used to assess the degree to which additive genetic variance influences ADHD symptom scores across two ages during infancy. A further objective in the study was to observe whether genetic association with a number of candidate markers reflects results from the quantitative genetic analysis.</p> <p>Method</p> <p>We have studied 312 twin pairs at two time-points, age 2 and age 3. A composite measure of ADHD symptoms from two parent-rating scales: The Child Behavior Checklist/1.5 - 5 years (CBCL) hyperactivity scale and the Revised Rutter Parent Scale for Preschool Children (RRPSPC) was used for both quantitative and molecular genetic analyses.</p> <p>Results</p> <p>At ages 2 and 3 ADHD symptoms are highly heritable (<it>h</it><sup><it>2 </it></sup><it>= </it>0.79 and 0.78, respectively) with a high level of genetic stability across these ages. However, we also observe a significant level of genetic change from age 2 to age 3. There are modest influences of non-shared environment at each age independently (<it>e</it><sup><it>2 </it></sup>= 0.22 and 0.21, respectively), with these influences being largely age-specific. In addition, we find modest association signals in <it>DAT1 </it>and <it>NET1 </it>at both ages, along with suggestive specific effects of <it>5-HTT </it>and <it>DRD4 </it>at age 3.</p> <p>Conclusions</p> <p>ADHD symptoms are heritable at ages 2 and 3. Additive genetic variance is largely shared across these ages, although there are significant new effects emerging at age 3. Results from our genetic association analysis reflect these levels of stability and change and, more generally, suggest a requirement for consideration of age-specific genotypic effects in future molecular studies.</p

    Genotyping of the Alzheimer's disease genome-wide association study index single nucleotide polymorphisms in the brains for dementia research cohort

    Get PDF
    The Brains for Dementia Research project is a recently established longitudinal cohort which aims to provide brain tissue for research purposes from neuropathologically defined samples. Here we present the findings from our analysis on the 19 established GWAS index SNPs for Alzheimer’s disease, in order to demonstrate if the BDR sample also displays association to these variants. A highly significant association of the APOE ɛ4 allele was identified (p = 3.99×10–12). Association tests for the 19 GWAS SNPs found that although no SNPs survive multiple testing, nominal significant findings were detected and concordance with the Lambert et al. GWAS meta-analysis was observed
    corecore