117 research outputs found

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Analytical solutions for wall slip effects on magnetohydrodynamic oscillatory rotating plate and channel flows in porous media using a fractional burgers viscoelastic model

    Get PDF
    A theoretical analysis of magnetohydrodynamic (MHD) incompressible flows of Burger's fluid through a porous medium in a rotating frame of reference is presented. The constitutive model of a Burger's fluid is used based on a fractional calculus formulation. Hydrodynamic slip at the wall (plate) is incorporated and a fractional generalized Darcy model deployed to simulate porous medium drag force effects. Three different cases are considered- namely, flow induced by a general periodic oscillation at a rigid plate, periodic flow in a parallel plate channel and finally Poiseuille flow. In all cases the plate (s) boundary (ies) are electrically-non-conducting and small magnetic Reynolds is assumed, negating magnetic induction effects. The well-posed boundary value problems associated with each case are solved via Fourier transforms. Comparisons are made between the results derived with and without slip conditions. 4 special cases are retrieved from the general fractional Burgers model, viz Newtonian fluid, general Maxwell viscoelastic fluid, generalized Oldroyd-B fluid and the conventional Burger’s viscoelastic model. Extensive interpretation of graphical plots is included. We study explicitly the influence on wall slip on primary and secondary velocity evolution. The model is relevant to MHD rotating energy generators employing rheological working fluids

    Search for the Chiral Magnetic Effect in Au+Au collisions at sNN=27\sqrt{s_{_{\rm{NN}}}}=27 GeV with the STAR forward Event Plane Detectors

    Full text link
    A decisive experimental test of the Chiral Magnetic Effect (CME) is considered one of the major scientific goals at the Relativistic Heavy-Ion Collider (RHIC) towards understanding the nontrivial topological fluctuations of the Quantum Chromodynamics vacuum. In heavy-ion collisions, the CME is expected to result in a charge separation phenomenon across the reaction plane, whose strength could be strongly energy dependent. The previous CME searches have been focused on top RHIC energy collisions. In this Letter, we present a low energy search for the CME in Au+Au collisions at sNN=27\sqrt{s_{_{\rm{NN}}}}=27 GeV. We measure elliptic flow scaled charge-dependent correlators relative to the event planes that are defined at both mid-rapidity ∣η∣<1.0|\eta|<1.0 and at forward rapidity 2.1<∣η∣<5.12.1 < |\eta|<5.1. We compare the results based on the directed flow plane (Κ1\Psi_1) at forward rapidity and the elliptic flow plane (Κ2\Psi_2) at both central and forward rapidity. The CME scenario is expected to result in a larger correlation relative to Κ1\Psi_1 than to Κ2\Psi_2, while a flow driven background scenario would lead to a consistent result for both event planes[1,2]. In 10-50\% centrality, results using three different event planes are found to be consistent within experimental uncertainties, suggesting a flow driven background scenario dominating the measurement. We obtain an upper limit on the deviation from a flow driven background scenario at the 95\% confidence level. This work opens up a possible road map towards future CME search with the high statistics data from the RHIC Beam Energy Scan Phase-II.Comment: main: 8 pages, 5 figures; supplementary material: 2 pages, 1 figur

    Optimal randomized control policy of an unreliable server system with second optional service and startup

    No full text
    Purpose - To study the optimization of a randomized control problem in an M/G/1 queue in which a removable and unreliable server may provide two phases of heterogeneous service to arriving customers. Design/methodology/approach - Arriving customers follow a Poisson process and require the first essential service (FES). As soon as FES of a customer is completed, the customer may leave the system or opt for the second optional service (SOS). The service times of FES channel and SOS channel are assumed to be general distribution functions. The server requires a startup time with random length before starting service. When the server is working, he may meet unpredictable breakdowns but is immediately repaired. The inter-breakdown time and repair time of the removable server are exponentially random variable and generally random variable, respectively. By the convex combination property and the renewal reward theorem, several system performances are obtained. A cost model is developed to search the optimal two-threshold policy at a minimum cost. Sensitivity analysis is performed. Findings - Expressions for various system performances are derived. Sensitivity analysis of optimal randomized control policy (based on the developed expected cost function) with respect to system parameters is investigated. Originality/value - It is the first time that analytic results of sensitivity analysis of optimal randomized control policy for the complex system have been obtained which is quite useful and significant for engineers

    An M/G/1 Retrial Queue with Working Vacation

    No full text
    • 

    corecore