393 research outputs found
Effect of laser intensity on the determination of intermolecular electron transfer rate constants - Observation of Marcus inverted region in photoinduced back electron transfer reactions
The light intensity and concentration dependence of the photoproduct yield are investigated in a monophotonic process. The relationship of the photoproduct yield with the laser intensity and the complex concentration for a monophotonic process is derived under laser flash photolysis. The relationship is confirmed experimentally in a monophotonic process, i.e., triplet-triplet transition for a Cu(I) complex Cu6(DMNSN′)6 (DMNSN′=4,6-dimethylpyrimidine-2-thiolate). At low light intensity, the relationship can be approximated by a linear inverse square root dependence on the light intensity. Based on this equation, a method is proposed to determine the intrinsic back electron transfer rate constant kET b in photoinduced intermolecular electron transfer reactions, precluding the effect from the diffusional encounter pairs. The Marcus "inverted region" is observed by using the method in photoinduced back electron transfer reactions of [Au2(dppm)2](ClO4)2 (dppm=bis(diphenylphosphino)methane) with a series of substituted pyridinium acceptors. © 1998 American Institute of Physics.published_or_final_versio
Exploiting Dynamic Transaction Queue Size in Scalable Memory Systems
In order to increase parallelism via memory width in scalable memory systems, a straightforward approach is to employ larger number of memory controllers (MCs). Nevertheless, a number of researches have pointed out that, even executing bandwidth-bound applications in systems with larger number of MCs, the number of transaction queue entries is under-utilized—namely as shallower transaction queues, which provides an opportunity to power saving. In order to address this challenge, we propose the use of transaction queues with dynamic size that employs the most adequate size, taking into consideration the number of entries utilized while presenting adequate levels of bandwidth and minimizing power. Experimental results show that, while saving up to 75% number of entries, the introduction of dynamic transaction queue mechanism can present savings up to 75% of bandwidth and 20% of rank energy-per-bit reduction compared to systems with 1–2 entries
Parallel fast fourier transform in SPMD style of cilk
Copyright © 2019 Inderscience Enterprises Ltd. In this paper, we propose a parallel one-dimensional non-recursive fast Fourier transform (FFT) program based on conventional Cooley-Tukey’s algorithm written in C using Cilk in single program multiple data (SPMD) style. As a highly compact designed code, this code is compared with a highly tuned parallel recursive fast Fourier transform (FFT) using Cilk, which is included in Cilk package of version 5.4.6. Both algorithms are executed on multicore servers, and experimental results show that the performance of the SPMD style of Cilk fast Fourier transform (FFT) parallel code is highly competitive and promising
Urban energy exchanges monitoring from space
One important challenge facing the urbanization and global environmental change community is to understand the relation between urban form, energy use and carbon emissions. Missing from the current literature are scientific assessments that evaluate the impacts of different urban spatial units on energy fluxes; yet, this type of analysis is needed by urban planners, who recognize that local scale zoning affects energy consumption and local climate. However, satellite-based estimation of urban energy fluxes at neighbourhood scale is still a challenge. Here we show the potential of the current satellite missions to retrieve urban energy budget, supported by meteorological observations and evaluated by direct flux measurements. We found an agreement within 5% between satellite and in-situ derived net all-wave radiation; and identified that wall facet fraction and urban materials type are the most important parameters for estimating heat storage of the urban canopy. The satellite approaches were found to underestimate measured turbulent heat fluxes, with sensible heat flux being most sensitive to surface temperature variation (-64.1, +69.3 W m-2 for ±2 K perturbation); and also underestimate anthropogenic heat flux. However, reasonable spatial patterns are obtained for the latter allowing hot-spots to be identified, therefore supporting both urban planning and urban climate modelling
Recommended from our members
Bioavailability in soils
The consumption of locally-produced vegetables by humans may be an important exposure pathway for soil contaminants in many urban settings and for agricultural land use. Hence, prediction of metal and metalloid uptake by vegetables from contaminated soils is an important part of the Human Health Risk Assessment procedure. The behaviour of metals (cadmium, chromium, cobalt, copper, mercury, molybdenum, nickel, lead and zinc) and metalloids (arsenic, boron and selenium) in contaminated soils depends to a large extent on the intrinsic charge, valence and speciation of the contaminant ion, and soil properties such as pH, redox status and contents of clay and/or organic matter. However, chemistry and behaviour of the contaminant in soil alone cannot predict soil-to-plant transfer. Root uptake, root selectivity, ion interactions, rhizosphere processes, leaf uptake from the atmosphere, and plant partitioning are important processes that ultimately govern the accumulation ofmetals and metalloids in edible vegetable tissues. Mechanistic models to accurately describe all these processes have not yet been developed, let alone validated under field conditions. Hence, to estimate risks by vegetable consumption, empirical models have been used to correlate concentrations of metals and metalloids in contaminated soils, soil physico-chemical characteristics, and concentrations of elements in vegetable tissues. These models should only be used within the bounds of their calibration, and often need to be re-calibrated or validated using local soil and environmental conditions on a regional or site-specific basis.Mike J. McLaughlin, Erik Smolders, Fien Degryse, and Rene Rietr
Determining propensity for sub-optimal low-density lipoprotein cholesterol response to statins and future risk of cardiovascular disease
Background: Variability in low-density lipoprotein cholesterol (LDL-C) response to statins is underappreciated. We characterised patients by their statin response (SR), baseline risk of cardiovascular disease (CVD) and 10-year CVD outcomes.Methods and Results: A multivariable model was developed using 183,213 United Kingdom (UK) patients without CVD to predict probability of sub-optimal SR, defined by guidelines as <40% reduction in LDL-C. We externally validated the model in a Hong Kong (HK) cohort (n=170,904). Patients were stratified into four groups by predicted SR and 10-year CVD risk score: [SR1] optimal SR & low risk; [SR2] sub-optimal SR & low risk; [SR3] optimal SR & high risk; [SR4] sub-optimal SR & high risk; and 10-year hazard ratios (HR) determined for first major adverse cardiovascular event (MACE).Our SR model included 12 characteristics, with an area under the curve of 0.70 (95% confidence interval [CI] 0.70–0.71; UK) and 0.68 (95% CI 0.67–0.68; HK). HRs for MACE in predicted sub-optimal SR with low CVD risk groups (SR2 to SR1) were 1.39 (95% CI 1.35–1.43, p<0.001; UK) and 1.14 (95% CI 1.11–1.17, p<0.001; HK). In both cohorts, patients with predicted sub-optimal SR with high CVD risk (SR4 to SR3) had elevated risk of MACE (UK HR 1.36, 95% CI 1.32–1.40, p<0.001: HK HR 1.25, 95% CI 1.21–1.28, p<0.001). Conclusions: Patients with sub-optimal response to statins experienced significantly more MACE, regardless of baseline CVD risk. To enhance cholesterol management for primary prevention, statin response should be considered alongside risk assessment
Effects of rapid urbanisation on the urban thermal environment between 1990 and 2011 in Dhaka Megacity, Bangladesh
This study investigates the influence of land-use/land-cover (LULC) change on land surface temperature (LST) in Dhaka Megacity, Bangladesh during a period of rapid urbanisation. LST was derived from Landsat 5 TM scenes captured in 1990, 2000 and 2011 and compared to contemporaneous LULC maps. We compared index-based and linear spectral mixture analysis (LSMA) techniques for modelling LST. LSMA derived biophysical parameters corresponded more strongly to LST than those produced using index-based parameters. Results indicated that vegetation and water surfaces had relatively stable LST but it increased by around 2 °C when these surfaces were converted to built-up areas with extensive impervious surfaces. Knowledge of the expected change in LST when one land-cover is converted to another can inform land planners of the potential impact of future changes and urges the development of better management strategies
Vertebral Bomb Radiocarbon Suggests Extreme Longevity in White Sharks
Conservation and management efforts for white sharks (Carcharodon carcharias) remain hampered by a lack of basic demographic information including age and growth rates. Sharks are typically aged by counting growth bands sequentially deposited in their vertebrae, but the assumption of annual deposition of these band pairs requires testing. We compared radiocarbon (Δ14C) values in vertebrae from four female and four male white sharks from the northwestern Atlantic Ocean (NWA) with reference chronologies documenting the marine uptake of 14C produced by atmospheric testing of thermonuclear devices to generate the first radiocarbon age estimates for adult white sharks. Age estimates were up to 40 years old for the largest female (fork length [FL]: 526 cm) and 73 years old for the largest male (FL: 493 cm). Our results dramatically extend the maximum age and longevity of white sharks compared to earlier studies, hint at possible sexual dimorphism in growth rates, and raise concerns that white shark populations are considerably more sensitive to human-induced mortality than previously thought
Cascading signaling pathways improve the fidelity of a stochastically and deterministically simulated molecular RS latch
<p>Abstract</p> <p>Background</p> <p>While biological systems have often been compared with digital systems, they differ by the strong effect of crosstalk between signals due to diffusivity in the medium, reaction kinetics and geometry. Memory elements have allowed the creation of autonomous digital systems and although biological systems have similar properties of autonomy, equivalent memory mechanisms remain elusive. Any such equivalent memory system, however, must silence the effect of crosstalk to maintain memory fidelity.</p> <p>Results</p> <p>Here, we present a system of enzymatic reactions that behaves like an RS latch (a simple memory element in digital systems). Using both a stochastic molecular simulator and ordinary differential equation simulator, we showed that crosstalk between two latches operating in the same spatial localization disrupts the memory fidelity of both latches. Crosstalk was reduced or silenced when simple reaction loops were replaced with multiple step or cascading reactions, showing that cascading signaling pathways are less susceptible to crosstalk.</p> <p>Conclusion</p> <p>Thus, the common biological theme of cascading signaling pathways is advantageous for maintaining the fidelity of a memory latch in the presence of crosstalk. The experimental implementation of such a latch system will lead to novel approaches to cell control using synthetic proteins and will contribute to our understanding of why cells behave differently even when given the same stimulus.</p
- …