2,978 research outputs found

    Joint source-channel multistream coding and optical network adapter design for video over IP

    Full text link

    Inhibitory effect of rhubarb on intestinal α-glucosidase activity in type 1 diabetic rats

    Get PDF
    Purpose: To investigate the inhibitory effect of rhubarb on α-glucosidase activity in the small intestine of rats with type 1 diabetes.Methods: Type 1 diabetic rat model was established by intraperitoneally injecting 30 male SD rats with 1 % streptozocin (STZ). Rats with fasting blood glucose > 11 mmol/L (24) were used for the study. The rats were randomly divided into three equal groups including control, acarbose and rhubarb groups. Arcabose® (20 mg/kg /day) and rhubarb (100 mg/kg /day) were given by intra-gastric route via insertion of the cannula through the esophagus. Daily fasting blood glucose and daily postprandial glucose levels were assayed for all groups. On day 6, postprandial blood glucose, blood levels of C-peptide and insulin, and intestinal α-glucosidase were also determined.Results: There were no significant differences in levels of C-peptide, insulin and fasting blood glucose between control, Acarbose® and rhubarb groups (p > 0.05). However, α-glucosidase activity at 0, 30, 60 and 120 min in the rhubarb group was 1759.2, 1812.8, 1379.8 and 772.1 U, respectively,) while in the Acarbose® group it was 178.6, 1260.1, 1126.5, 599.2 U, respectively. α-Glucosidase activity in both groups initially showed an increase (p < 0.05), followed by a decline from 60 to 120 min (p ˂ 0.05). After 120 min, α-glucosidase activity in each of the two groups was significantly decreased compared with untreated control (1200 U) (p ˂ 0.05).Conclusion: The inhibitory effect of rhubarb on intestinal α-glucosidase activity of Type 1 diabetic rats is comparable to that of Arcabose®.This suggests that this plant may have clinically potent anti-diabetic properties.Keywords: Type 1 diabetes, α-Glucosidase activity, Acarbose®, Rhubarb, Postprandial glucose leve

    Anisotropic two-dimensional Heisenberg model by Schwinger-boson Gutzwiller projected method

    Full text link
    Two-dimensional Heisenberg model with anisotropic couplings in the xx and yy directions (JxJyJ_x \neq J_y) is considered. The model is first solved in the Schwinger-boson mean-field approximation. Then the solution is Gutzwiller projected to satisfy the local constraint that there is only one boson at each site. The energy and spin-spin correlation of the obtained wavefunction are calculated for systems with up to 20×2020 \times 20 sites by means of the variational Monte Carlo simulation. It is shown that the antiferromagnetic long-range order remains down to the one-dimensional limit.Comment: 15 pages RevTex3.0, 4 figures, available upon request, GWRVB8-9

    Heavy Quarks on Anisotropic Lattices: The Charmonium Spectrum

    Get PDF
    We present results for the mass spectrum of ccˉc{\bar c} mesons simulated on anisotropic lattices where the temporal spacing ata_t is only half of the spatial spacing asa_s. The lattice QCD action is the Wilson gauge action plus the clover-improved Wilson fermion action. The two clover coefficients on an anisotropic lattice are estimated using mean links in Landau gauge. The bare velocity of light νt\nu_t has been tuned to keep the anisotropic, heavy-quark Wilson action relativistic. Local meson operators and three box sources are used in obtaining clear statistics for the lowest lying and first excited charmonium states of 1S0^1S_0, 3S1^3S_1, 1P1^1P_1, 3P0^3P_0 and 3P1^3P_1. The continuum limit is discussed by extrapolating from quenched simulations at four lattice spacings in the range 0.1 - 0.3 fm. Results are compared with the observed values in nature and other lattice approaches. Finite volume effects and dispersion relations are checked.Comment: 36 pages, 6 figur

    Electromagnetically induced transparency in multi-level cascade scheme of cold rubidium atoms

    Full text link
    We report an experimental investigation of electromagnetically induced transparency in a multi-level cascade system of cold atoms. The absorption spectral profiles of the probe light in the multi-level cascade system were observed in cold Rb-85 atoms confined in a magneto-optical trap, and the dependence of the spectral profile on the intensity of the coupling laser was investigated. The experimental measurements agree with the theoretical calculations based on the density matrix equations of the rubidium cascade system.Comment: 9 pages, 5 figure

    Establishing a consensus for the hallmarks of cancer based on gene ontology and pathway annotations

    Get PDF
    Background The hallmarks of cancer provide a highly cited and well-used conceptual framework for describing the processes involved in cancer cell development and tumourigenesis. However, methods for translating these high-level concepts into data-level associations between hallmarks and genes (for high throughput analysis), vary widely between studies. The examination of different strategies to associate and map cancer hallmarks reveals significant differences, but also consensus. Results Here we present the results of a comparative analysis of cancer hallmark mapping strategies, based on Gene Ontology and biological pathway annotation, from different studies. By analysing the semantic similarity between annotations, and the resulting gene set overlap, we identify emerging consensus knowledge. In addition, we analyse the differences between hallmark and gene set associations using Weighted Gene Co-expression Network Analysis and enrichment analysis. Conclusions Reaching a community-wide consensus on how to identify cancer hallmark activity from research data would enable more systematic data integration and comparison between studies. These results highlight the current state of the consensus and offer a starting point for further convergence. In addition, we show how a lack of consensus can lead to large differences in the biological interpretation of downstream analyses and discuss the challenges of annotating changing and accumulating biological data, using intermediate knowledge resources that are also changing over time.Computer Systems, Imagery and Medi

    Relativistic Coulomb Sum Rules for (e,e)(e,e^\prime)

    Full text link
    A Coulomb sum rule is derived for the response of nuclei to (e,e)(e,e^\prime) scattering with large three-momentum transfers. Unlike the nonrelativistic formulation, the relativistic Coulomb sum is restricted to spacelike four-momenta for the most direct connection with experiments; an immediate consequence is that excitations involving antinucleons, e.g., NNˉN{\bar N} pair production, are approximately eliminated from the sum rule. Relativistic recoil and Fermi motion of target nucleons are correctly incorporated. The sum rule decomposes into one- and two-body parts, with correlation information in the second. The one-body part requires information on the nucleon momentum distribution function, which is incorporated by a moment expansion method. The sum rule given through the second moment (RCSR-II) is tested in the Fermi gas model, and is shown to be sufficiently accurate for applications to data.Comment: 32 pages (LaTeX), 4 postscript figures available from the author

    Measurement of hybrid content of heavy quarkonia using lattice NRQCD

    Get PDF
    Using lowest-order lattice NRQCD to create heavy meson propagators and applying the spin-dependent interaction, cBg2mqσBc_B^{} \frac{-g}{2m_q}\vec\sigma\cdot\vec{B}, at varying intermediate time slices, we compute the off-diagonal matrix element of the Hamiltonian for the quarkonium-hybrid two-state system. Thus far, we have results for one set of quenched lattices with an interpolation in quark mass to match the bottomonium spectrum. After diagonalization of the two-state Hamiltonian, we find the ground state of the Υ\Upsilon to show a 0.0035(1)cB20.0035(1)c_B^2 (with cB21.53.1c_B^2 \sim 1.5-3.1) probability admixture of hybrid, bbˉg>|b\bar{b}g>.Comment: 11 pages, 4 figures, to appear in Phys Rev
    corecore