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Establishing a consensus for the hallmarks 
of cancer based on gene ontology and pathway 
annotations
Yi Chen*, Fons. J. Verbeek and Katherine Wolstencroft 

Introduction
The hallmarks of cancer, presented initially in 2000 and updated in 2011 [1, 2], provides 
a conceptual framework for describing the process of tumorigenesis. The hallmarks 
suggest all cancer cells should have 10 essential molecular characteristics: (1) sustain-
ing proliferative signaling, (2) evading growth suppressor, (3) resisting cell death, (4) 
enabling replicative immortality, (5) inducing angiogenesis, (6) activating invasion and 
metastasis, (7) genome instability and mutation, (8) tumor promoting inflammation, 
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Background: The hallmarks of cancer provide a highly cited and well-used concep-
tual framework for describing the processes involved in cancer cell development and 
tumourigenesis. However, methods for translating these high-level concepts into data-
level associations between hallmarks and genes (for high throughput analysis), vary 
widely between studies. The examination of different strategies to associate and map 
cancer hallmarks reveals significant differences, but also consensus.

Results: Here we present the results of a comparative analysis of cancer hallmark 
mapping strategies, based on Gene Ontology and biological pathway annotation, from 
different studies. By analysing the semantic similarity between annotations, and the 
resulting gene set overlap, we identify emerging consensus knowledge. In addition, we 
analyse the differences between hallmark and gene set associations using Weighted 
Gene Co-expression Network Analysis and enrichment analysis.

Conclusions: Reaching a community-wide consensus on how to identify cancer hall-
mark activity from research data would enable more systematic data integration and 
comparison between studies. These results highlight the current state of the consensus 
and offer a starting point for further convergence. In addition, we show how a lack of 
consensus can lead to large differences in the biological interpretation of downstream 
analyses and discuss the challenges of annotating changing and accumulating biologi-
cal data, using intermediate knowledge resources that are also changing over time.
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(9) deregulating cellular energetic and (10) avoiding immune destruction. Since the 
theory was proposed, it has been widely used for interpreting cancer research results, 
particularly in large-scale, big data studies where whole genome and transcriptome data 
are compared [3–5]. To date, the two Hallmarks of Cancer papers have been cited over 
83,000 times [6], showing the utility of the hallmarks for describing cancer research 
results.

However, although the Hallmarks of Cancer are widely used to describe results, they 
describe cellular processes at a conceptual level, and the interpretation of these concepts, 
and also the methods for interpretation, vary between studies. In order to reach conclu-
sions about the presence or absence of a hallmark process, researchers associate hall-
marks with genes, or biological pathways or functional properties at the data level [5]. 
If these associations are made explicit, studies can be compared with one another and 
can be reproduced. If this information is omitted, comparisons are more difficult and 
studies are less reproducible [7]. The aim of this study is to identify previous attempts 
to explicitly associate cancer hallmarks with genes and functional annotation at the data 
level, and to assess the similarity of these interpretations. If we can identify and further 
develop consensus for data-level descriptions of cancer hallmarks, we will enable a more 
systematic use of the hallmark concepts and therefore enable a better understanding of 
the similarities and differences between cancer research results.

Previous attempts to formalise the descriptions of cancer hallmarks at the data level 
have followed a number of approaches. Text mining approaches have attempted to 
identify keyword matches to hallmarks from the literature [8], functional annotation 
approaches have attempted to use the Gene Ontology or biological pathway resources 
as intermediate knowledge sources to describe the hallmarks [5, 9, 10], and curation 
approaches have attempted to assess the involvement of individual genes that have 
previously been causally linked to cancer by expert analysis of the literature. The most 
extensive example of this final approach is the COSMIC database effort to manually 
describe hallmark characteristics for all genes in the cancer gene census [11]. Currently, 
30% of the census has been described, so this represents ongoing work.

The most popular approach for defining cancer hallmarks is to use an intermediate 
knowledge resource. Using well-annotated intermediate knowledge resources, such as 
the Gene Ontology, or biological pathways, to classify and organise data is a well-estab-
lished bioinformatics approach to data integration [12, 13]. However, it is not without 
challenges. There are a large number of biological pathway resources available. If dif-
ferent studies use different pathway resources, how comparable are the results? It has 
previously been shown that mapping between pathway resources is difficult and that 
selecting different pathway resources can significantly affect the results of enrichment 
analyses [14–16]. Consolidation between pathway resources, using pathway ontologies, 
such as [17], or by curating mappings between pathways [18] can mitigate these prob-
lems. If the Gene Ontology (GO) is used as an intermediate knowledge resource, the 
process of assigning Gene ontology terms to specific hallmarks can vary. In most studies, 
this activity is driven by domain experts, but the breadth of the cancer research domain 
can easily lead to bias in any individual study. Another problem with using GO is that 
it evolves quickly. The structure of GO changes and so do the numbers of genes anno-
tated with any given term [19]. Associations between cancer hallmarks and GO terms 
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may therefore not remain valid over time. As our understanding of biology in general, 
as well as cancer biology changes, associations between the cancer hallmarks and func-
tional annotations must evolve to keep pace. In this study, we assess the differences and 
consensus between studies that have attempted to formalise the descriptions of the can-
cer hallmarks at the data level. From the literature, we have identified only 5 cases where 
the associations between hallmarks and GO terms, or hallmarks and biological pathways 
have been made explicit [5, 9, 10, 20, 21]. We refer to these associations as ‘mapping 
schemes’. Publications were only included if they contained a list of mappings to at least 
7 of 10 cancer hallmarks, if the association procedure was described, and if the date of 
publication was after the 2011 hallmarks paper. From the five papers, four used the Gene 
Ontology and one used biological pathways for hallmark associations. One publica-
tion [9] used both GO and biological pathways, but the pathways were defined using a 
resource that is now obsolete, so the pathway definitions were omitted.

It is clear that other studies have also used similar associations, but without an explicit 
description of the mapping between hallmarks and functional annotation terms, they 
cannot reliably be reproduced for the comparison [22–26].

We compared the Gene Ontology and biological pathway terms selected to represent 
individual cancer hallmarks, both directly and by analysing their semantic similarity. In 
addition, we examined the differences between the sets of genes that were annotated 
with the selected GO terms and biological pathways, which we name ‘Hallmark Genes’.

In order to assess the impact of the differences between Hallmark Gene sets, (and fur-
ther our understanding of the consensus), we compare downstream results by perform-
ing Weighted Gene Co-expression Network Analysis (WGCNA) [27] and enrichment 
analyses with prognostic cancer genes from the TCGA [28]. If the hallmarks of cancer 
represent the process of tumorigenesis, genes that show changes in expression that are 
prognostic for patient survival may have direct involvement in this process as ‘drivers’, or 
maybe closely associated ‘passengers’ [29]. Genes that are classified as both prognostic 
and hallmark genes would be expected to play more important roles in co-expression 
networks, so the ratios of genes classified as prognostic, hallmark and prognostic-hall-
mark were compared.

Finally, we investigated the structural changes to the Gene Ontology hierarchy in the 
time periods between publications to explore the role of GO evolution in differences 
between mapping schemes.

The results of these analyses provide a clearer picture of the consensus knowledge that 
exists for cancer hallmark annotation. By identifying this consensus, we create a com-
mon foundation for understanding the hallmark concepts at the data level. In doing so 
we highlight the challenges of integrating accumulated and distributed biological knowl-
edge over time and also the importance of data provenance for the annotation of biologi-
cal information for reproducible informatics results.

Results
In this study we compared 5 different mapping schemes. 4 mapping schemes that 
use GO, named GO1 [9], GO2 [10], GO3 [20] and GO4 [21], and 1 pathway map-
ping scheme, named PW1 [5]. All provided explicit lists of GO and pathway iden-
tifiers used for hallmark annotation, and all described 7 or more hallmarks. For most 
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methods presented, GO terms and pathways were assigned to hallmarks by focus groups 
of domain experts.

Similarities between gene ontology terms

To investigate the consensus and divergence between different cancer hallmark map-
ping schemes, we first identified which Gene Ontology terms were consistently selected 
by different GO mapping schemes to annotate cancer hallmarks. As shown in Fig. 1a, 
most terms were not selected by all mapping schemes and many were unique to one 
scheme. In GO3 57.9% of terms were unique and in GO4 77.1% were unique. Only one 
term, ‘Negative Regulation of cell Cycle’ (GO:0045786), was selected by all 4 schemes. 
although it was mapped to different cancer hallmarks. In GO1 and GO2, it was mapped 
to ‘Evading Growth Suppressor’ while in GO3 and GO4, it was mapped to ‘Sustaining 
Proliferative Signaling’.

Figure 1b shows the number of GO terms shared between mapping schemes for each 
cancer hallmark. For most hallmarks, the majority of GO terms were only selected by 
1 or 2 schemes, and a small proportion of terms were selected by 3 schemes. For ‘acti-
vating Invasion and metastasis’, more than 80% of terms were unique to one mapping 
scheme.

In contrast, although only twelve GO terms were selected by any scheme for the hall-
mark ‘enabling replicative signaling’, 3 out of 12 were selected by 3 schemes, showing a 
larger consensus than other hallmarks. For the hallmark ‘evading growth suppressor’, 4 
of 6 terms were selected by GO1, and GO2, which indicates good consensus, but GO3 
and GO4 did not provide any mapping terms for this hallmark, so the level of consensus 
is undetermined.

Despite the differences between mapping schemes and the inconsistencies concerning 
which GO terms should be used to annotate which hallmark, a degree of consensus was 
identified and indicates a core of shared knowledge.

Fig. 1 a Frequency of selection of GO terms from different schemes. b Frequency of selection of GO terms 
for individual cancer hallmarks. The x-axis represents the number of GO terms. The Y-axis represents individual 
cancer hallmarks. Bars coloured in different color represent how frequently it was selected by mapping 
methods to annotate this cancer hallmark
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Analysing the divergence and consensus in hallmark gene sets

Of the five hallmark mapping schemes we identified for this study, four used the Gene 
Ontology as an intermediate knowledge resource, and only one used biological pathways 
from KEGG [30] and the MSigDB canonical pathways data set [31]. To directly com-
pare these annotations, we either had to make use of existing mapping between GO and 
pathway resources, or we had to look at the intersection of the genes annotated with 
each resource. The former method is problematic due to the difference in the granularity 
of annotation (as reactions in pathways are typically mapped to GO, rather than indi-
vidual gene product functions in pathways) . The latter is advantageous in this particular 
case because the authors of the pathway mapping method provided a full list of genes 
included in the biological pathways selected at the time of writing and could therefore be 
used for direct comparison.

The upset plot (Fig.  2) shows the intersections and differences between hallmark 
gene sets. Only 769 genes were identified as hallmark genes in all cases, and there was a 
marked difference in size between the gene sets. 2171 genes were identified as hallmark 
genes in PW1, while the smallest gene set generated by GO mapping schemes was 2752. 
The other three GO schemes generated sets of more than 8800 genes. This may indicate 
a greater specificity for PW1 and GO4, but as they were not found to be subsets of the 
larger hallmark gene sets, this does not fully explain the discrepancy.

The number of annotations for selected GO terms from GO4 were significantly lower 
than for the other schemes (Additional file  1) , demonstrating that more specific GO 
terms were used for hallmark definitions. We therefore suggest GO4 shows a greater 

Fig. 2 Hallmark Gene Set Comparison. The upset plot shows the number of genes in each hallmark gene set 
and their intersections. The orange and blue lines represent genes shared by GO mapping schemes and all 
mapping schemes respectively
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specificity of term selection. In addition, however, GO terms corresponding to the 
hallmarks ‘Avoiding Immune Destruction’ and ‘Evading Growth Suppressor’ were not 
defined for GO4. The incomplete definition of the hallmarks could also contribute to 
the difference in data set size. The GO2 hallmark gene set has a similar size to GO1 and 
GO3, but it has more than 2000 unique genes. GO1 has 320 unique genes and GO3 has 
165.

When hallmark gene sets were examined at the level of individual hallmarks, consen-
sus and differences were observed (Additional file 2) . For ‘resisting cell death’, for exam-
ple, GO1 and GO3 share the same gene set, but significant differences were observed in 
other hallmarks. For example, in ‘activating invasion and metastasis’, although GO2 has a 
larger hallmark gene set size, it has 1000 fewer genes for this hallmark than GO3. Based 
on these results, we conclude that significantly different hallmark gene sets are gener-
ated when different mapping schemes are utilized, which demonstrates the importance 
of reaching consensus knowledge for effective comparisons between studies that use the 
hallmark concepts to describe cancer research results.

It was not possible to include PW1 in this comparison as the authors of the study did 
not explicitly state which biological pathway related to which cancer hallmark. We could 
infer this for many of the pathways and we observed that multiple hallmarks may be rep-
resented by some pathways, but this is an interpretation of results, rather than a reuse of 
stated results and so was omitted.

Impact of hallmark mapping strategies on downstream analyses

The results of comparing GO terms and hallmark genes have shown both consensus and 
difference. We therefore investigated the impact of using different mapping schemes on 
the results of downstream omics analyses.

Prognostic genes and hallmarks

Survival analysis is often used to indicate the importance of genes for specific cancer 
types. By studying large numbers of individual cases, genes whose expression are prog-
nostic for an unfavourable outcome can be identified. As hallmark genes are involved in 
the biological activities that promote cancer development, it is expected that prognos-
tic genes would either be hallmark genes themselves or be co-expressed with hallmark 
genes [5]. As different mapping schemes would generate different hallmark gene sets, 
investigating the varying overlap in prognostic and hallmark genes would highlight the 
consequences of different hallmark definitions. Here we identified the overlap between 
prognostic and hallmark genes for 17 cancer types using different mapping schemes 
(referred to as prognostic-hallmark genes) . The prognostic gene data was taken from 
PW1 [5]. Prognostic-hallmark genes shared between multiple cancer types were iden-
tified. The impact of selecting different mapping schemes was assessed by pairwise 
comparisons where there were 5 or more shared genes. The Jaccard Index of prognostic-
hallmark gene groups was calculated. Figure 3 shows the results.

Figure  3 shows the similarities between groups of prognostic-hallmark genes in dif-
ferent mapping schemes. As expected, none of the 6 comparisons showed complete 
consensus, reflecting the differences between hallmark gene sets. Comparisons between 
GO4 and the other three schemes were the most dissimilar, with the absence of any 
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genes shared between some cancers (e.g. between Renal Cancer, Stomach Cancer and 
Endometrial Cancer) . GO1 and GO3 were grouped closest together, with the highest 
Jaccard index scores. Comparisons between GO1 and GO2, GO2 and GO3 produced a 
moderate scores. The full list of results can be found in Additional file 3.

Cancer hallmarks enrichment and co‑expression networks

To further investigate the relationship between prognostic genes and cancer hallmark 
mapping schemes, we examined the co-expression networks of prognostic and hallmark 
genes and their enrichment in breast cancer. As hallmark gene sets are different, the 
prognostic-hallmark gene sets also differ in size and member genes. In this study, 294, 
277, 289 and 91 prognostic-hallmark genes were identified for GO1 to GO4, respectively. 
By using the breast cancer transcriptome data from the TCGA Genomics Data Com-
mons (GDC) data portal (https:// portal. gdc. cancer. gov/), a gene co-expression network 
was constructed using the Weighted Gene Co-Expression Network Analysis (WGCNA) 
method, using the R package WGCNA [27].

In the WGCNA analysis, we identified 7 modules for GO1, 6 modules for GO2 and 
GO3 and 1 module for GO4 (Fig.  4a and Additional file  4: a–c). As only 91 genes 
were defined as prognostic-hallmark genes in GO4, while there were more than 200 
genes in the other 3 schemes, it was reasonable that fewer modules were identified 
in GO4. For each module, hub genes were identified based on their intra-modular 
connectivity and an enrichment analysis was conducted to find associated biological 
activities with g:profiler. 5 genes with the highest intra-modular connectivity in each 
module were designated as hub genes. We identified a high overlap between modules 
from different mapping schemes. Module 7 in GO1 (GO1_7) and module 6 in GO3 

Fig. 3 Pairwise comparison of groups of prognostic-hallmark genes identified in the same cancers between 
mapping schemes. Each block represents the overlap of a group of prognostic-hallmark genes shared by 
multiple cancer types with different mapping schemes. The X-axis shows pairwise comparison of mapping 
schemes. The color of each block represents the similarity scores of the same group of genes using the 
Jaccard index. Red represents a higher score and Blue represents a lower score

https://portal.gdc.cancer.gov/
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(GO3_6) have the same hub gene sets. Similarly, GO3_2, GO2_3 and GO1_2 also 
had a highly overlapped hub gene set (Table 1). Further investigation of the proteins 
encoded by hub genes revealed that they were closely related, according to protein–
protein interaction (PPI) data obtained from the String database [32] (Fig.  4b). For 
example, both gene CD3E (ENSG00000198851) and CD3D (ENSG00000167286) are 
part of the TCR-CD3 complex located on T-lymphocyte cell surface and are involved 
in adaptive immune response. CD3E is a hub gene in all 3 modules and the CD3D is a 
hub gene in module GO1_2 and GO3_2.

Table 1 Hub genes of modules

Gene id Gene name Function modules

ENSG00000013725 CD6 Mediates cell-cell contacts and regulates T-cell 
responses via

its interaction with ALCAM/CD166

GO3_2, GO1_2

ENSG00000116824 CD2 Mediate adhesion between T-cells and other cell 
types

GO3_2, GO2_3, GO1_2

ENSG00000167286 CD3D Part of the TCR-CD3 complex,plays an essential role in 
adaptive immune response

GO3_2, GO1_2

ENSG00000198851 CD3E Part of the TCR-CD3 complex,plays an essential role in 
adaptive immune response

GO3_2, GO1_2

ENSG00000117091 CD48 Facilitate interaction between activated lymphocytes 
and involved

in regulating T-cell activation

GO3_2, GO2_3, GO1_2

ENSG00000185811 IKZF1 Plays a role in the development of lymphocytes, B- 
and T-cells

GO2_3

ENSG00000162739 SLAMF6 Associated with innate immune system and class I 
MHC mediated

antigen processing and presentation

GO2_3

ENSG00000183918 SH2D1A Plays a major role in the bidirectional stimulation of 
T and B cells

GO1_2

Fig. 4 a Network analysis of prognostic hallmark gene expression in breast cancer with GO1 schemes 
identifies distinct modules of closely interconnected genes. b PPI network of hub genes of Module GO3_2, 
GO2_3 and GO1_2
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Enrichment analysis was performed on all modules and the functional similarity 
between them was evaluated. We selected all significant GO terms ( P < 0.05 ) and used 
the R package GOSemsim [33] for pairwise comparisons. As we can see in Fig. 5a, mod-
ules with highly overlapped hub genes have higher semantic similarity scores, corrobo-
rating the similarities in biological activity (e.g. GO3_2, GO2_3 and GO1_2). As shown 
Fig.  5b, all of the 3 modules were associated with the same GO terms related to the 
hallmark ‘avoiding immune destruction’, such as GO:0006955 ‘Immune response’ and 
GO:0002376 ‘immune system process’. Other terms such as GO:0045058 ‘T cell selec-
tion’ were enriched by all 3 modules, although it was not in the top 10 GO terms of 
GO3_2. Based on the enrichment results, we can conclude that the biological activities 
of the hallmark ‘avoiding immune destruction’ could be a leading factor in breast can-
cer. In contrast, for modules with low functional similarity, such as, module GO3_1 and 
GO2_5, different GO terms are enriched and therefore associated with different cancer 
hallmarks (Additional file 5). These results demonstrate that the initial mapping process 
of linking cancer hallmarks to GO terms has significant effects on downstream analyses 
and therefore overall conclusions. If the mapping process is not made explicit, compari-
sons between studies cannot be made. By reaching a consensus view on mapping, this 
situation can be improved.

GO evolution in relation to difference between mapping schemes

The hallmarks mapping schemes under comparison were developed over the period 
of 7 years and therefore were developed using different versions of the Gene Ontology 
and associated annotation. Understanding which differences between mapping schemes 
were the result of topological or annotation changes to GO could therefore help to 
further refine consensus and make results and conclusions more comparable between 
studies.

Previous research has shown large changes in GO [19]. From 2004 to 2015, the num-
ber of terms in GO increased by 2.5 fold (from 16,139 to 40,810) and the number of GO 

Fig. 5 a Semantic similarity scores between modules. Red indicates high similarity and blue represents low 
similarity. b The top 10 significant GO terms (P< 0.05) in GO1_2, GO2_3 and GO3_2 modules
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terms used for annotations of human genes increased 3.8 fold (from 2972 to 11,403). 
Furthermore, the number of GO annotations for human genes changed from 19,615 to 
109,152, increasing by 6.3 fold. The proportion of protein-coding human genes with at 
least 1 annotation changed from 32 to 65% and relationships between GO terms were 
also enriched and changed. 21,998 connections became 78,078 in the same period and 
6833 relationships were removed. Other structural changes, such as, terms becoming 
obsolete or being merged into other terms also changed the hierarchical structure and 
information content of GO. According to the Archived data from the Gene Ontology 
Consortium (http:// archi ve. geneo ntolo gy. org/ full/) , 1086 GO terms were made obso-
lete during this period. By constructing directed acyclic graphs (DAG) for each map-
ping scheme, based on selected GO terms and their neighbors, using Gene Ontology 
archived data at different time points, we evaluated the extent to which GO evolution 
contributed to the inconsistency between mapping schemes.

Structural differences in GO between mapping schemes

GO2 is derived from a paper published in 2012, GO3 and GO4 were published in 2017, 
and GO1 was published in 2015. As none of the publications provided information on 
the version of GO used in their initial analyses, we selected evenly-spaced time points 
to study GO evolution across the whole period. To construct directed acyclic graphs 
(DAGs) to represent GO terms selected by a particular scheme, we first reconstructed 
the full GO hierarchical graph with the archived relationship data downloaded from 
Gene Ontology Consortium in Cytoscape [34]. For each mapping scheme, we generated 
a sub-graph of all GO terms selected and their neighbours, and made pairwise compari-
sons between each sub-graph. In Fig. 6, we compare the GO hierarchy graphs of GO1 
(2016) and GO2 (2012). Crimson nodes represent GO terms that existed in both time 
points but were only selected by GO2, while light red nodes represent GO terms which 
were obsolete in 2016 and therefore unavailable for selection by GO1. Dark blue nodes 
represent GO terms that existed in both 2012 and 2016 but were only selected by GO1, 
and light blue nodes represent GO terms had not been created in 2012 and not available 
for selection by GO2, but were selected in 2016 by GO1. Figure 6 shows large differences 
between the DAGs for each scheme. Seven GO terms selected by GO2 were obsolete 
by 2016, and 20 terms selected by GO1 were not created in 2012, so structural differ-
ences played a role, but did not account for all differences. Similar observations were 
made in the comparison between GO3 and GO4 (Additional file 6). These results show 
that although there were structural changes to GO over the time period, the majority of 
terms were available for selection for each mapping scheme. This suggests structural dif-
ferences were not the main factor and that differences in interpretation of the relation-
ships between GO and the cancer hallmarks played a larger role. It is worth noting that 
the mapping scheme from GO2 is being used and maintained for further research by the 
authors of the GO2 paper and others. Despite all the changes to GO, there have been no 
updates to this mapping scheme since the initial publication.

An additional investigation into the changes to the numbers of annotation to GO 
terms over the same time period showed a general increase in the number of all annota-
tions (Additional file  7). Changes in GO annotations increase the number of genes in 
a hallmark gene set. Mapping schemes that favour less specific GO terms for hallmark 

http://archive.geneontology.org/full/
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definitions therefore show a larger increase in hallmark gene set size. This is reflected in 
the results of downstream analyses, where we observe larger impacts on results.

Consensus between methods

While the results of these analyses show inconsistencies between different mapping 
schemes, they also show consensus. From this consensus, we can identify a common 
understanding of functional cancer hallmark mapping, which could contribute to the 
creation of a systematic mapping method. The goal is to combine current consensus 
knowledge and maintain an active integration with GO and pathway resources as they 
change in the future. To investigate the consensus from all mapping methods, we com-
bined GO and pathway results by identifying corresponding GO terms for the path-
ways selected by PW1. For pathways from the MSigDB canonical pathways data set, 
GO and pathway mapping has been specified and published by MSigDB and was used 
directly (Additional file  8). For pathways from KEGG, corresponding GO terms were 

Fig. 6 A comparison of the GO Biological Process topology of GO terms selected by GO1 (2016) and GO2 
(2012), constructed from all selected GO terms and their first neighbours. Crimson nodes represent GO terms 
that existed in both time points but were only selected by GO2, while light red nodes represent GO terms 
which were obsoleted in 2016. Similarly, dark blue nodes represent GO terms that existed in both 2012 and 
2016 but were only selected by GO1 and light blue nodes represent GO terms had not been created in 2012
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not provided by KEGG directly. Therefore, corresponding GO terms were retrieved 
by identifying GO terms whose definitions were the most similar to the description of 
KEGG pathways. 14 GO terms were identified to represent the KEGG pathways. After 
correspondence between GO and pathways had been established, we used GO terms to 
describe and define the level of consensus across all five mapping schemes. For each can-
cer hallmark, GO terms selected by three or more mapping schemes were seen as con-
sensus terms. In total, we identified 42 consensus GO terms across all hallmarks and we 
identified some degree of consensus for each hallmark (Additional file 9). Figure 7 shows 
the visualization of the hallmark ‘Activating Invasion and Metastasis’ where there were 
seven consensus terms. Nodes coloured in orange and yellow represent those selected 
by 3 and 4 methods respectively. Similarly, for the hallmark ‘Sustaining Proliferative 
Signaling’, there were also seven terms considered as consensus terms. These hallmarks 
show the most consensus. Other hallmarks showed much lower levels of agreement. For 
example, for ‘Inducing Angiogenesis’, only two terms were consensus terms, while 23 
different terms were chosen across all mapping schemes to annotate this hallmark. A 
similar situation can be seen in ‘Tumor Promoting Inflammation’ where only two terms 
were consensus terms out of 16 terms selected across all methods. These results indicate 
that a refinement is required in the hallmark definitions, in order to establish a better 
consensus.

Discussion
This study compares the differences between cancer hallmark functional annotation 
descriptions, developed for different purposes at different time-points. Although the 
hallmarks are in widespread use, the numbers of publications that explicitly describe the 
association between the hallmark concepts and biological molecules and/or functional 
annotations are limited. By building on the knowledge from these explicit associations, 
we explore the extent of existing consensus.

The core hallmark gene set identified at the intersection of compared mapping 
schemes is small, but it offers important information about where there is shared under-
standing. Genes in the core gene set are not all annotated with a small number of hall-
marks, but spread across all ten hallmarks. This means that there is a partial shared 
understanding across all hallmarks and all mapping schemes. Similarly, when examining 
the consensus GO terms, there are consensus terms for every hallmark, although the 

Fig. 7 Visualization of the consensus GO terms for defining the cancer hallmark ‘Activating Invasion and 
Metastasis’. Nodes colored in red were selected by 3 schemes and nodes coloured in yellow represent GO 
terms selected by 4 methods
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amount of consensus varies. For the hallmark ‘Activating Invasion and Metastasis’, seven 
GO terms are consensus terms and three of them are selected by four mapping schemes. 
In contrast, the hallmark ‘Inducing Angiogenesis’, only has two consensus terms out of 
23 terms selected across all mapping schemes. This suggests that the definition for this 
hallmark is currently insufficient and should be further refined.

The WGCNA and enrichment analysis results showed how the same transcriptom-
ics data set could be interpreted in different ways, depending upon the initial selection 
of hallmark annotation definitions. Modules from different mapping schemes indicated 
enrichment by completely different hallmarks (Additional file  5 shows two modules 
unique to one mapping scheme), leading to different conclusions about which hallmarks 
were playing a role in breast cancer prognosis. These results highlight the importance of 
building consensus and enabling a more systematic annotation of hallmark activity.

Some modules showed high functional similarity between different mapping schemes, 
and also shared similar sets of hub genes. These collective results show a clear signature 
for the hallmark ‘Avoiding Immune Destruction’ across multiple mapping schemes, indi-
cating the importance of this hallmark for prognosis in breast cancer. It is worth noting 
that we would not expect all hallmarks to be represented in the WGCNA results for only 
one cancer, but the fact that we have clear signatures for some hallmarks shows an asso-
ciation between the prognostic genes and the functional annotation that represents the 
hallmarks.

The consensus GO terms identified for each cancer hallmark show where there is a 
shared understanding of the hallmarks of cancer. They could therefore be the founda-
tion for a more systematic approach to mapping cancer hallmarks to data via intermedi-
ate knowledge resources. In the longer term, the consensus could be the starting point 
for a broader community discussion and combined with other efforts. For example, the 
COSMIC data resource (Catalogue of Somatic Mutations in Cancer) [28] has under-
taken a manual annotation approach to hallmark identification. For each gene in the 
COSMIC Gene Census, curators are manually extracting evidence for cancer hallmark 
involvement from the literature. To date, approximately 300 genes have been annotated 
out of 700. The process is slow and will take a number of years to complete, but COS-
MIC expects to identify hallmark activity for almost all genes in the census. When we 
compare the consensus GO terms from this analysis with those enriched in the Gene 
Census, the majority (31/42) are present and enriched, indicating that the consensus GO 
terms we have identified represent important consensus knowledge.

Study limitations and future work

The fact that we only identified one example of a pathway-based approach that fitted 
our inclusion criteria, against four GO approaches, is a limitation for establishing path-
way consensus. Nevertheless, both methods are being used and should therefore be 
considered here. The GO-generated hallmark gene sets were much larger than those of 
the pathway example and were caused by the inclusion of high-level terms from the GO 
hierarchy. Terms from higher levels have a larger number of genes annotated with them, 
but they also have a low information content and lack specificity. For example, terms 
such as, Immune Response (GO:0006955) or Cell Cycle (GO:0007049), were selected to 
define cancer hallmarks. Substituting these general terms with more specific descendant 
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terms could make the GO term set more informative and reduce the overall number of 
gene products. However, the differences in term positions in the GO hierarchy cannot 
explain the differences between mapping schemes. Mapping schemes with smaller hall-
mark gene sets were not defined by descendants of the more general terms selected by 
mapping schemes with larger hallmark gene sets. This is highlighted by the low pairwise 
semantic similarity scores between mapping schemes.

A major limitation for analysing the semantic similarity between mapping schemes, 
however, is that current semantic similarity methods assume the same underlying 
knowledge structure. In reality, we were comparing annotations derived from different 
versions of the knowledge structure. For a fair comparison, we need to know if the same 
GO terms were available for each different study to select, or if some were only intro-
duced later, or became obsolete between time-points. Our analysis of the GO topologi-
cal structure revealed that most terms were available through the whole time-period, 
but that the researchers simply did not select the same (or similar) terms.

Rearrangements in higher level terms from the GO biological process hierarchy meant 
that relationships between many terms selected to represent hallmarks were altered sig-
nificantly between time points. For example, in 2012 the term ‘death’ (GO:0016265) was 
a descendant of ‘Biological process’, and had one descendent, ‘cell death’ (GO:0008219). 
In March 2016, this term was made obsolete. The descendant term ‘Cell death’ was origi-
nally connected to the term ‘cellular process’ (GO:0009987) in the 2012 network, but by 
2016, it had been removed and substituted with a linkage to the term ‘single-organism 
cellular process (GO:0044763)’, which was created after 2012. Alterations at high levels 
in GO affect the whole ontology structure and therefore have a large impact when cal-
culating semantic distance or information content between sets of GO terms. Current 
semantic similarity measures do not take such changes into account and we propose the 
development of new approaches to semantic similarity that will include changes to the 
ontology structure over time.

Building a shared understanding of the cancer hallmarks at the data level, enables more 
insight into comparisons between research results, particularly where high through-
put studies are concerned. As we generate more data and invest further in personalised 
approaches to cancer therapy, it is more important to focus on systematic methods to 
organise, classify and compare results. Functional annotation is an essential compo-
nent in most bioinformatics analyses. Collecting better provenance about the annota-
tion process and being more explicit about underlying assumptions and associations can 
help us make the best use of those annotations in the changing landscape of biological 
knowledge.

Methods
Background to Publications Selected for Comparison

This study is based on the analysis of cancer hallmark mapping schemes from publica-
tions that explicitly describe the mapping between intermediate knowledge bases and 
the hallmarks. The motivations for hallmark mapping were different between these pub-
lications, but all attempted to identify a general hallmark representation. There were 
two common ways to link the hallmarks of cancer to biological molecules and data; (1) 
mapping to Gene Ontology terms and (2) mapping to biological pathways. Both types 
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of annotation allow a direct link to individual genes. We considered publications dating 
from the second cancer hallmarks review paper [2], in order to take all 10 hallmarks into 
account, but we included publications that described 8 or more hallmarks. Most impor-
tantly, we only considered publications that provided lists of the terms used for mapping 
and also at least a brief description of the process of associating the terms to hallmarks. 
In total, four publications and one peer-reviewed poster satisfied these criteria. Ulhen 
et al [5] mapped hallmarks to specific biological pathways, referred to by KEGG [30] and 
MSigDB [31] identifiers and described in terms of the gene products found in the path-
ways. We refer to this mapping scheme as PW1. The other four mapping schemes were 
based on the association between gene ontology (GO) terms and cancer hallmarks, and 
are referred to as GO1 [9], GO2 [10], GO3 [20], GO4 [21], respectively. The mapping 
scheme created by Plaisier (GO2) [10] was also used and cited in 2016 [35] and Thorsson 
[36]. Although the GO mapping scheme is maintained by the authors at https:// github. 
com/ baliga- lab/ sygnal/ blob/ master/ R/ goSim Hallm arksO fCanc er.R, it did not appear to 
change between these time-points. The full study workflow can be found in Additional 
file 10.

The hallmarks of cancer mapping schemes from each publication were developed 
using different methodologies and in accordance with the authors’ background knowl-
edge and aims. Table 2 summarises the main differences.

For PW1, the gene products annotated with each selected biological pathway were 
recorded by the authors at the time of publication and were therefore used as they 
were at publication. they were also updated to their current representations, in order 
to observe the differences. For GO1–GO4, genes annotated with the selected terms (or 
their descendants) were not included in the publication data and were therefore recon-
structed from archival GO data and current information. The genes currently anno-
tated by selected Gene Ontology terms were identified using the human ENSEMBL 
database (version 99) [37] via biomart [38] and descendant terms were identified using 
QUICKGO [39]. The list of GO terms selected by each method and identified for each 
individual hallmark are available in Additional file 11. The full list of genes annotated by 
selected Gene Ontology terms and biological pathways are available in Additional file 12.

Hallmark gene comparison

To examine the overlap between Hallmark Genes from different mapping schemes, an 
upset plot was constructed using the R package UpsetR [40]. In addition, the number of 
genes annotated to individual cancer hallmarks with different GO mapping schemes was 
also investigated. The bar chart was created using the Python package Seaborn [41].

Table 2 Summary of 5 mapping methods

Methods Source Experts involved Size (pathway/GO) Gene number Hallmark included

GO1 Gene ontology Yes 57 (2 obsolete) 9465 10 hallmarks

GO2 Gene ontology Unknown 40 (2 obsolete) 9551 10 hallmarks

GO3 Gene ontology Yes 67 8825 8 hallmarks

GO4 Gene ontology Unknown 35 2751 8 hallmarks

PW1 MSigDB, KEGG Yes 14 2171 10 hallmarks

https://github.com/baliga-lab/sygnal/blob/master/R/goSimHallmarksOfCancer.R
https://github.com/baliga-lab/sygnal/blob/master/R/goSimHallmarksOfCancer.R
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Prognostic genes

The definition and data for prognostic genes was taken from the PW1 publication [5] 
as they provided a list of prognostic genes for 17 different types of cancer types in 
detail (Additional file 13).

Prognostic‑hallmark genes in multiple cancers

Genes labelled as both prognostic genes and hallmark genes are named prognostic-
hallmark genes. For each method, we classified genes into different groups based on 
the number of cancer types where they were exclusively labelled as prognostic-hall-
mark genes. Then for each group, we further classified them into subgroups based 
on cancer types where they were labelled as prognostic-hallmark genes. Subgroups 
with less than 5 genes were excluded. For each subgroup, if it existed in at least one 
method, it was included. For existing subgroups, we calculated the Jaccard Index to 
determine how different the subgroups were in pairwise comparisons of the mapping 
schemes. If a subgroup did not exist in 1 of 2 compared mapping schemes, the score 
was 0. Results were visualized by heatmap using the Python Package Seaborn [41].

Gene co‑expression and clustering

Breast cancer was selected for co-expression network analysis because there are more 
than 1000 breast cancer cases in the TCGA database (the 3rd largest), and it only has 
582 prognostic genes. When constructing a co-expression network, a large number 
of cases can minimize correlation coefficient bias and a relatively small number of 
prognostic genes can help to minimise the number of prognostic genes that need to 
be excluded from the study due to an insufficient coefficient value. The RNA-Seq data 
was obtained from TCGA with HTSeq-FPKM values [28]. 1222 breast cancer samples 
were downloaded. Weighted Gene Co-expression Network Analysis (WGCNA) was 
utilized to construct prognostic hallmark gene co-expression networks [27]. During 
data processing, we log transformed the FPKM value, and then removed outliers by 
clustering samples. Next, after measuring the co-expression similarity using pearson 
correlation, we further transformed it into the weighted co-expression network by 
raising the co-expression similarity to a power picked by function ‘pickSoftThreshold’. 
As modules are defined as highly interconnected genes, we adopted automatic block-
wise module detection function to cluster closely connected genes into modules.

Hub gene detection and functional enrichment analysis

The hub genes in WGCNA modules are genes with the high intramodular connec-
tivity. Modules of constructed networks are exported to Cytoscape, and hub genes 
of each modules are identified based on intramodular degree. 5 genes with highest 
degree are chosen. For module GO1_2 and Module GO3_6, 6 genes are selected as 
there are two genes meet the lowest degree requirements of hub genes in both mod-
ules. Functional enrichment analyses of modules were conducted using g:profiler [42]. 
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GO terms with P value less than 0.05 were considered significant results. Only terms 
from the Biological Process hierarchy were considered.

Functional similarity and protein–protein interaction network

The functional similarities between the modules were calculated in order to determine 
if there were close or distant relationships between enriched terms of different modules. 
The R package GOSemSim [33] was used with a best match average strategy (BMA). 
The annotation data used was the Genome wide annotation for the Human from Bio-
conductor [43]. The Wang method [44] was used to assess semantic similarity. Modules 
enriched in only 1 or 2 GO terms were not included. Protein–protein interaction net-
works were constructed using STRING [32]. Hub genes of modules with high functional 
similarities were used to construct the PPI network.

GO evolution

To investigate the impact of changes to the structure of GO, we used the Gene Ontology 
Biological Process hierarchy and associated annotations at three time points (June 2012, 
June 2016, Jan 2021). Data including GO term relationships and gene product count was 
downloaded from the Gene Ontology Consortium (http:// archi ve. geneo ntolo gy. org/) 
[45].

Comparison between different Versions of GO

We constructed two GO hierarchy graphs in Cytoscape [34] based on archived relation-
ship data downloaded from the Gene Ontology Consortium corresponding to differ-
ent time points. For GO1, GO3 and GO4 mapping schemes, we created 3 sub-graphs 
of selected GO terms from each mapping scheme, their first neighbors and the edges 
between them based on the 2016 graph. For GO2, we created a sub-graph in similar way 
based on the 2012 graph. The comparisons between sub-graphs was performed using 
DyNet [46]. White nodes and edges represent GO terms and relationships which are 
included in both networks while nodes and edges with color represent GO terms or rela-
tionships which are included in 1 of 2 networks. Dot plots shows the number of gene 
products annotated to different GO terms. They were created by using the Python pack-
age Seaborn [41].

Consensus between methods

For individual cancer hallmarks, a consensus GO term is one that was selected by more 
than 3 methods. Visualization of consensus terms belonging to hallmarks was performed 
using GOA-tools [47]. GO terms selected by 3 and 4 schemes were colored orange and 
yellow respectively. Corresponding GO terms for MSigDB pathways are identified and 
mapped by the MSigDB database and are therefore used directly in our comparison. The 
KEGG pathway database does not provide an equivalent mapping to corresponding GO 
terms, so we derived these mappings by examining the most similar GO term definitions 
and KEGG pathway definitions.

http://archive.geneontology.org/
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Data provenance

This study aims to compare multiple mapping schemes and data from multiple time 
points. In order to make the work here transparent and reproducible, the provenance of 
all data and tools are listed. The descendants of selected GO terms were identified using 
QuickGO API and downloaded in Jan 2021. Genes annotated to selected GO terms and 
their descendants were identified using Biomart with the Ensembl 102 [37] dataset. The 
version of GOsemsim [33] used for semantic similarity was 2.14.0 and the annotation 
dataset in GOsemsim was Homo Sapien from OrgDb, version 3.12 [43]. The underlying 
GO version for each of these tools was declared to be the latest version at the time of 
analysis, although the exact version number was not provided by tool documentation. 
The classification of prognostic genes for 17 cancer types was taken directly from Ulhen 
et al, 2017 [5]. RNA-Seq data for breast cancer co-expression network construction was 
downloaded from TCGA, v23.0, and published on the 7th April, 2020. Gene Ontology 
data for 2012 and 2016 was taken from the Gene Ontology archive, published in June 
2012 and June 2016 respectively. Pathway data from PW1 was from MSigDB version 5.2.
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