38 research outputs found

    The effect of a diet with fructan-rich chicory roots on intestinal helminths and microbiota with special focus on Bifidobacteria and Campylobacter in piglets around weaning

    Get PDF
    The restrictions on the use of antibiotic and anthelmintic treatments in organic pig farming necessitate alternative non-medical control strategies. Therefore, the antibiotic and parasite-reducing effect of a fructan-rich (prebiotic) diet of dried chicory was investigated in free-ranging piglets. Approximately half of 67 piglets from 9 litters were experimentally infected with Ascaris suum and Trichuris suis in the suckling period (1 to 7 weeks of age) and 58 of the piglets were challenged daily with E. coli O138:F8 for 9 days after weaning to induce weaning diarrhoea. The litters were fed either chicory (30% DM) or a control diet. The effect of chicory on intestinal helminths, intestinal microbiota, especially Bifidobacteria and Campylobacter spp., and E. coli post-weaning diarrhoea was assessed. The weight gain of the piglets was not impaired significantly by chicory. The intestinal A. suum worm burden was reduced by 64% (P=0.034) in the chicory-fed piglets, whereas these same piglets had 63% more T. suis worms (P=0.016). Feeding with chicory elicited no changes among the main bacterial groups in ileum according to terminal restriction fragment length polymorphism (T-RFLP) analysis. However, the terminal-restriction fragment (T-RF) 208 bp, which may belong to Lachnospiraceae, was stimulated by the chicory feed (P=0.03), and T-RF 370 bp that matches Enterobacter belonging to the Enterobacteria was reduced (P=0.004). Additionally, chicory increased the level of Bifidobacteria (P=0.001) and the faecal Campylobacter excretion level was transitorily reduced in chicory-fed piglets at 7 weeks of age (P=0.029). Unfortunately, it was not possible to assess the effect of chicory on post-weaning diarrhoea as it did not develop. In conclusion, feeding piglets chicory around the time of weaning caused complex changes of the microbiota and parasite communities within the intestinal tract, and feeding piglets chicory may therefore serve as an animal-friendly strategy to control pathogens

    F4+ ETEC infection and oral immunization with F4 fimbriae elicits an IL-17-dominated immune response

    Get PDF
    Enterotoxigenic Escherichia coli (ETEC) are an important cause of post-weaning diarrhea (PWD) in piglets. Porcine-specific ETEC strains possess different fimbrial subtypes of which F4 fimbriae are the most frequently associated with ETEC-induced diarrhea in piglets. These F4 fimbriae are potent oral immunogens that induce protective F4-specific IgA antibody secreting cells at intestinal tissues. Recently, T-helper 17 (Th17) cells have been implicated in the protection of the host against extracellular pathogens. However, it remains unknown if Th17 effector responses are needed to clear ETEC infections. In the present study, we aimed to elucidate if ETEC elicits a Th17 response in piglets and if F4 fimbriae trigger a similar response. F4+ ETEC infection upregulated IL-17A, IL-17F, IL-21 and IL-23p19, but not IL-12 and IFN-γ mRNA expression in the systemic and mucosal immune system. Similarly, oral immunization with F4 fimbriae triggered a Th17 signature evidenced by an upregulated mRNA expression of IL-17F, RORγt, IL-23p19 and IL-21 in the peripheral blood mononuclear cells (PBMCs). Intriguingly, IL-17A mRNA levels were unaltered. To further evaluate this difference between systemic and mucosal immune responses, we assayed the cytokine mRNA profile of F4 fimbriae stimulated PBMCs. F4 fimbriae induced IL-17A, IL-17F, IL-22 and IL-23p19, but downregulated IL-17B mRNA expression. Altogether, these data indicate a Th17 dominated response upon oral immunization with F4 fimbriae and F4+ ETEC infection. Our work also highlights that IL-17B and IL-17F participate in the immune response to protect the host against F4+ ETEC infection and could aid in the design of future ETEC vaccines

    Medicinal plants – prophylactic and therapeutic options for gastrointestinal and respiratory diseases in calves and piglets? A systematic review

    Full text link
    corecore