104 research outputs found
Mucosal Damage and Neutropenia Are Required for Candida albicans Dissemination
Candida albicans fungemia in cancer patients is thought to develop from initial gastrointestinal (GI) colonization with subsequent translocation into the bloodstream after administration of chemotherapy. It is unclear what components of the innate immune system are necessary for preventing C. albicans dissemination from the GI tract, but we have hypothesized that both neutropenia and GI mucosal damage are critical for allowing widespread invasive C. albicans disease. We investigated these parameters in a mouse model of C. albicans GI colonization that led to systemic spread after administration of immunosuppression and mucosal damage. After depleting resident GI intestinal flora with antibiotic treatment and achieving stable GI colonization levels of C. albicans, it was determined that systemic chemotherapy with cyclophosphamide led to 100% mortality, whereas selective neutrophil depletion, macrophage depletion, lymphopenia or GI mucosal disruption alone resulted in no mortality. Selective neutrophil depletion combined with GI mucosal disruption led to disseminated fungal infection and 100% mortality ensued. GI translocation and dissemination by C. albicans was also dependent on the organism's ability to transform from the yeast to the hyphal form. This mouse model of GI colonization and fungemia is useful for studying factors of innate host immunity needed to prevent invasive C. albicans disease as well as identifying virulence factors that are necessary for fungal GI colonization and dissemination. The model may also prove valuable for evaluating therapies to control C. albicans infections
Sound symbolism in synesthesia: evidence from a lexical-gustatory synesthete
Synesthesia is a condition in which perceptual or cognitive stimuli (e.g., a written letter) trigger atypical additional percepts (e.g., the color yellow). Although these cross-modal pairings appear idiosyncratic in that they superficially differ from synesthete to synesthete, underlying patterns do exist and these can, in some circumstances, reflect the cross-modal intuitions of nonsynesthetes (e.g., higher pitch sounds tend to be "seen" in lighter colors by synesthetes and are also paired to lighter colors by nonsynesthetes in cross-modal matching tasks). We recently showed that grapheme-color synesthetes are more sensitive to sound symbolism (i.e., cross-modal sound-meaning correspondences) in natural language compared to nonsynesthetes. Accordingly, we hypothesize that sound symbolism may be a guiding force in synesthesia to dictate what types of synesthetic experiences are triggered by words. We tested this hypothesis by examining the cross-modal mappings of lexical-gustatory synesthete, JIW, for whom words trigger flavor experiences. We show that certain phonological features (e.g., front vowels) systematically trigger particular categories of taste (e.g., bitter) in his synesthesia. Some of these associations agree with sound symbolic patterns in natural language. This supports the view that synesthesia may be an exaggeration of cross-modal associations found in the general population and that sound symbolic properties of language may arise from similar mechanisms as those found in synesthesia
Physiologic Expression of the Candida albicans Pescadillo Homolog Is Required for Virulence in a Murine Model of Hematogenously Disseminated Candidiasis
Morphogenetic conversions contribute to the pathogenesis of Candida albicans invasive infections. Many studies to date have convincingly demonstrated a link between filamentation and virulence; however, relatively little is known regarding the role of the filament-to-yeast transition during the pathogenesis of invasive candidiasis. We previously identified the C. albicans pescadillo homolog (PES1) as essential during yeast growth and growth of lateral yeast on hyphae but not during hyphal growth. Furthermore, we demonstrated that PES1 is required for virulence in vivo in a Galleria mellonella larva model of candidiasis. Here, we have used a regulatable tetO-PES1/pes1 strain to assess the contribution of C. albicansPES1 to pathogenesis in the commonly used and clinically relevant murine model of hematogenously disseminated candidiasis. Our results indicate that a physiologically controlled level of PES1 expression is required for full virulence in this animal model, with virulence defects observed both when PES1 is overexpressed and and when it is depleted. The pathogenetic defect of cells depleted of PES1 is not due to a general growth defect, as demonstrated by the fact that PES1-depleted cells still kill Caenorhabditis elegans as efficiently as the wild type due to hyphal outgrowth through worm tissues. Our results suggest a critical role of lateral yeast growth in the ability of C. albicans to normally proliferate within tissues, as well as a pivotal role for Pes1 in the normal developmental cycle of C. albicans within the mammalian host during infection
Detection of mostly viral pathogens and high proportion of antibiotic treatment initiation in hospitalised children with community-acquired pneumonia in Switzerland – baseline findings from the first two years of the KIDS-STEP trial
AIMS OF THE STUDY: Globally, since the introduction of conjugate-vaccines against encapsulated bacteria, respiratory viruses have caused most hospitalisations for community-acquired pneumonia. The aim of this study was to describe pathogens detected and their association with clinical findings in Switzerland.
METHODS: Baseline data were analysed for all trial participants enrolled between September 2018 and September 2020 into the KIDS-STEP Trial, a randomised controlled superiority trial on the effect of betamethasone on clinical stabilisation of children admitted with community-acquired pneumonia. Data included clinical presentation, antibiotic use and results of pathogen detection. In addition to routine sampling, nasopharyngeal specimens were analysed for respiratory pathogens using a panel polymerase chain reaction test covering 18 viral and 4 bacterial pathogens.
RESULTS: 138 children with a median age of 3 years were enrolled at the eight trial sites. Fever (obligatory for enrolment) had been present for median 5 days before admission. Most common symptoms were reduced activity (129, 93.5%) and reduced oral intake (108, 78.3%). Oxygen saturation <92% was found in 43 (31.2%). Forty-three participants (29.0%) were already on antibiotic treatment prior to admission and 104 participants (75.4%) received antibiotic treatment on admission. Pathogen testing results were available from 132 children: 31 (23.5%) had respiratory syncytial virus detected, 21 (15.9%) human metapneumovirus. The pathogens detected showed expected seasonal and age preponderance and were not associated with chest X-ray findings.
CONCLUSIONS: In the context of the predominantly viral pathogens detected, the majority of antibiotic treatment is probably unnecessary. The ongoing trial, as well as other studies, will be able to provide comparative pathogen detection data to compare pre- and post-COVID-19-pandemic settings
Phosphoric Metabolites Link Phosphate Import and Polysaccharide Biosynthesis for Candida albicans Cell Wall Maintenance
ACKNOWLEDGMENTS We declare no conflicts of interest. We thank Jesús Pla for his kind gift of the anti-Mkc1 antibody and Kristin Moffitt and Richard Malley for generous advice in ELISA technology and use of the ELISA reader. We thank Tahmeena Chowdhury for scientific discussions leading up to this work. We thank the Candida Genome Database. N.-N.L., M.A.-Z., W.Q., and J.R.K. were supported by R21 AI137716 and by Boston Children’s Hospital Department of Pediatrics. M.A.-Z. was partially funded by the Alfonso Martin Escudero Foundation. J.D.-A. and O.L. were funded by the Boston Children’s Hospital Department of Pediatrics and U19 AI118608-01A1. N.A.R.G. was supported by the Wellcome Trust and the Medical Research Council Centre for Medical Mycology (MR/N006364/1).Peer reviewedPublisher PD
Phonological and orthographic influences in the bouba–kiki effect
We examine a high-profile phenomenon known as the bouba–kiki effect, in which non-word names are assigned to abstract shapes in systematic ways (e.g. rounded shapes are preferentially labelled bouba over kiki). In a detailed evaluation of the literature, we show that most accounts of the effect point to predominantly or entirely iconic cross-sensory mappings between acoustic or articulatory properties of sound and shape as the mechanism underlying the effect. However, these accounts have tended to confound the acoustic or articulatory properties of non-words with another fundamental property: their written form. We compare traditional accounts of direct audio or articulatory-visual mapping with an account in which the effect is heavily influenced by matching between the shapes of graphemes and the abstract shape targets. The results of our two studies suggest that the dominant mechanism underlying the effect for literate subjects is matching based on aligning letter curvature and shape roundedness (i.e. non-words with curved letters are matched to round shapes). We show that letter curvature is strong enough to significantly influence word–shape associations even in auditory tasks, where written word forms are never presented to participants. However, we also find an additional phonological influence in that voiced sounds are preferentially linked with rounded shapes, although this arises only in a purely auditory word–shape association task. We conclude that many previous investigations of the bouba–kiki effect may not have given appropriate consideration or weight to the influence of orthography among literate subjects
Algae as Protein Factories: Expression of a Human Antibody and the Respective Antigen in the Diatom Phaeodactylum tricornutum
Microalgae are thought to offer great potential as expression system for various industrial, therapeutic and diagnostic recombinant proteins as they combine high growth rates with all benefits of eukaryotic expression systems. Moreover, microalgae exhibit a phototrophic lifestyle like land plants, hence protein expression is fuelled by photosynthesis, which is CO2-neutral and involves only low production costs. So far, however, research on algal bioreactors for recombinant protein expression is very rare calling for further investigations in this highly promising field. In this study, we present data on the expression of a monoclonal human IgG antibody against the Hepatitis B surface protein and the respective antigen in the diatom Phaeodactylum tricornutum. Antibodies are fully-assembled and functional and accumulate to 8.7% of total soluble protein, which complies with 21 mg antibody per gram algal dry weight. The Hepatitis B surface protein is functional as well and is recognized by algae-produced and commercial antibodies
The Worksite Health Promotion Capacity Instrument (WHPCI): development, validation and approaches for determining companies' levels of health promotion capacity
<p>Abstract</p> <p>Background</p> <p>The Worksite Health Promotion Capacity Instrument (WHPCI) was developed to assess two key factors for effective worksite health promotion: collective willingness and the systematic implementation of health promotion activities in companies. This study evaluates the diagnostic qualities of the WHPCI based on its subscales Health Promotion Willingness and Health Promotion Management, which can be used to place companies into four different categories based on their level of health promotion capacity.</p> <p>Methods</p> <p>Psychometric evaluation was conducted using exploratory factor and reliability analyses with data taken from a random sample of managers from n = 522 German information and communication technology (ICT) companies. Receiver operating characteristic (ROC) analyses were conducted to determine further diagnostic qualities of the instrument and to establish the cut-off scores used to determine each company's level of health promotion capacity.</p> <p>Results</p> <p>The instrument's subscales, Health Promotion Willingness and Health Promotion Management, are based on one-dimensional constructs, each with very good reliability (Cronbach's alpha = 0.83/0.91). ROC analyses demonstrated satisfactory diagnostic accuracy with an area under the curve (AUC) of 0.76 (SE = 0.021; 95% CI 0.72-0.80) for the Health Promotion Willingness scale and 0.81 (SE = 0.021; 95% CI 0.77-0.86) for the Health Promotion Management scale. A cut-off score with good sensitivity (71%/76%) and specificity (69%/75%) was determined for each scale. Both scales were found to have good predictive power and exhibited good efficiency.</p> <p>Conclusions</p> <p>Our findings indicate preliminary evidence for the validity and reliability of both subscales of the WHPCI. The goodness of each cut-off score suggests that the scales are appropriate for determining companies' levels of health promotion capacity. Support in implementing (systematic) worksite health promotion can then be tailored to each company's needs based on their current capacity level.</p
Dispersion as an Important Step in the Candida albicans Biofilm Developmental Cycle
Biofilms are dynamic microbial communities in which transitions between planktonic and sessile modes of growth occur interchangeably in response to different environmental cues. In the last decade, early events associated with C. albicans biofilm formation have received considerable attention. However, very little is known about C. albicans biofilm dispersion or the mechanisms and signals that trigger it. This is important because it is precisely C. albicans cells dispersed from biofilms that are the main culprits associated with candidemia and establishment of disseminated invasive disease, two of the gravest forms of candidiasis. Using a simple flow biofilm model recently developed by our group, we have performed initial investigations into the phenomenon of C. albicans biofilm dispersion, as well as the phenotypic characteristics associated with dispersed cells. Our results indicate that C. albicans biofilm dispersion is dependent on growing conditions, including carbon source and pH of the media used for biofilm development. C. albicans dispersed cells are mostly in the yeast form and display distinct phenotypic properties compared to their planktonic counterparts, including enhanced adherence, filamentation, biofilm formation and, perhaps most importantly, increased pathogenicity in a murine model of hematogenously disseminated candidiasis, thus indicating that dispersed cells are armed with a complete arsenal of “virulence factors” important for seeding and establishing new foci of infection. In addition, utilizing genetically engineered strains of C. albicans (tetO-UME6 and tetO-PES1) we demonstrate that C. albicans biofilm dispersion can be regulated by manipulating levels of expression of these key genes, further supporting the evidence for a strong link between biofilms and morphogenetic conversions at different stages of the C. albicans biofilm developmental cycle. Overall, our results offer novel and important insight into the phenomenon of C. albicans biofilm dispersion, a key part of the biofilm developmental cycle, and provide the basis for its more detailed analysis
The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies
Despite the clinical significance of balanced chromosomal abnormalities (BCAs), their characterization has largely been restricted to cytogenetic resolution. We explored the landscape of BCAs at nucleotide resolution in 273 subjects with a spectrum of congenital anomalies. Whole-genome sequencing revised 93% of karyotypes and demonstrated complexity that was cryptic to karyotyping in 21% of BCAs, highlighting the limitations of conventional cytogenetic approaches. At least 33.9% of BCAs resulted in gene disruption that likely contributed to the developmental phenotype, 5.2% were associated with pathogenic genomic imbalances, and 7.3% disrupted topologically associated domains (TADs) encompassing known syndromic loci. Remarkably, BCA breakpoints in eight subjects altered a single TAD encompassing MEF2C, a known driver of 5q14.3 microdeletion syndrome, resulting in decreased MEF2C expression. We propose that sequence-level resolution dramatically improves prediction of clinical outcomes for balanced rearrangements and provides insight into new pathogenic mechanisms, such as altered regulation due to changes in chromosome topology
- …