12 research outputs found

    Depressed excitability and ion currents linked to slow exocytotic fusion pore in chromaffin cells of the SOD1(G93A) mouse model of amyotrophic lateral sclerosis

    Full text link
    Altered synaptic transmission with excess glutamate release has been implicated in the loss of motoneurons occurring in amyotrophic lateral sclerosis (ALS). Hyperexcitability or hypoexcitability of motoneurons from mice carrying the ALS mutation SOD1G93A (mSOD1) has also been reported. Here we have investigated the excitability, the ion currents, and the kinetics of the exocytotic fusion pore in chromaffin cells from postnatal day 90 to postnatal day 130 mSOD1 mice, when motor deficits are already established. With respect to wild-type (WT), mSOD1 chromaffin cells had a decrease in the following parameters: 95% in spontaneous action potentials, 70% in nicotinic current for acetylcholine (ACh), 35% in Na+ current, 40% in Ca2+-dependent K+ current, and 53% in voltage-dependent K+ current. Ca2+ current was increased by 37%, but the ACh-evoked elevation of cytosolic Ca2+ was unchanged. Single exocytotic spike events triggered by ACh had the following differences (mSOD1 vs. WT): 36% lower rise rate, 60% higher decay time, 51% higher half-width, 13% lower amplitude, and 61% higher quantal size. The expression of the α3-subtype of nicotinic receptors and proteins of the exocytotic machinery was unchanged in the brain and adrenal medulla of mSOD1, with respect to WT mice. A slower fusion pore opening, expansion, and closure are likely linked to the pronounced reduction in cell excitability and in the ion currents driving action potentials in mSOD1, compared with WT chromaffin cells.This work was funded by: (1) SAF-2010-21795, MINECO; (2) SAF-2010-792 18837, MINECO; (3) CABICYC, UAM/Bioibérica; (4) Fundación Teófilo 793 Hernando, Madrid, Spai

    Novel sulfoglycolipid IG20 causes neuroprotection by activating the phase II antioxidant response in rat hippocampal slices

    Full text link
    Los datos de investigación asociados a este artículo están disponibles en http://dx.doi.org/10.1016/j.neuropharm.2016.12.016Compound IG20 is a newly synthesised sulphated glycolipid that promotes neuritic outgrowth and myelinisation, at the time it causes the inhibition of glial proliferation and facilitates exocytosis in chromaffin cells. Here we have shown that IG20 at 0.3–10 μM afforded neuroprotection in rat hippocampal slices stressed with veratridine, glutamate or with oxygen plus glucose deprivation followed by reoxygenation (OGD/reox). Excess production of reactive oxygen species (ROS) elicited by glutamate or ODG/reox was prevented by IG20 that also restored the depressed tissue levels of GSH and ATP in hippocampal slices subjected to OGD/reox. Furthermore, the augmented iNOS expression produced upon OGD/reox exposure was also counteracted by IG20. Additionally, the IG20 elicited neuroprotection was prevented by the presence of inhibitors of the signalling pathways Jak2/STAT3, MEK/ERK1/2, and PI3K/Akt, consistent with the ability of the compound to increase the phosphorylation of Jak2, ERK1/2, and Akt. Thus, the activation of phase II response and the Nrf2/ARE pathway could explain the antioxidant and anti-inflammatory effects and the ensuing neuroprotective actions of IG20This study was supported by a grant from Ministerio de Economía y Competitividad, Spain (MINECO SAF2013-44108-P to AGG and LG; MAT2015-65184-C2-2-R to AFM, CABICYC UAM-Bioiberica and European Commission-ERC, People (Marie Curie Actions) FP7 under REA grant agreement n PCIG11-GA-2012-322156; Spanish Ministry of Health (Instituto de Salud Carlos III) (grant PI14/00372) and Miguel Servet (CP11/00165); Bayer A.G., “From Targets to Novel Drugs” program (grant 2015-03-1282) and Fundacion FIPSE (grant 12-00001344-15) to RL. RL thanks IS Carlos III for research contract under Miguel Servet Program. P.M. thanks MECD for FPU fellowship (AP2010-1219

    Gramine derivatives targeting Ca2+ channels and Ser/Thr phosphatases: A new dual strategy for the treatment of neurodegenerative diseases

    Full text link
    This document is the unedited author's version of a Submitted Work that was subsequently accepted for publication in Journal of Medicinal Chemistry , copyright © American Chemical Society after peer review. To access the final edited and published work, see http://pubs.acs.org/doi/abs/10.1021/acs.jmedchem.6b00478We describe the synthesis of gramine derivatives and their pharmacological evaluation as multipotent drugs for the treatment of Alzheimer’s disease. An innovative multitarget approach is presented, targeting both voltage-gated Ca2+ channels, classically studied for neurodegenerative diseases, and Ser/Thr phosphatases, which have been marginally aimed, even despite their key role in protein τ dephosphorylation. Twenty-five compounds were synthesized, and mostly their neuroprotective profile exceeded that offered by the head compound gramine. In general, these compounds reduced the entry of Ca2+ through VGCC, as measured by Fluo-4/AM and patch clamp techniques, and protected in Ca2+ overload-induced models of neurotoxicity, like glutamate or veratridine exposures. Furthermore, we hypothesize that these compounds decrease τ hyperphosphorylation based on the maintenance of the Ser/Thr phosphatase activity and their neuroprotection against the damage caused by okadaic acid. Hence, we propose this multitarget approach as a new and promising strategy for the treatment of neurodegenerative diseasesThis work was supported by the following grant: Proyectos de Investigación en Salud (PI13/00789, IS Carlos III). R.L.C is granted by Universidad Autónoma de Madri

    Plasmalemmal sodium-calcium exchanger shapes the calcium and exocytotic signals of chromaffin cells at physiological temperature

    No full text
    The activity of the plasmalemmal Na(+)/Ca(2+) exchanger (NCX) is highly sensitive to temperature. We took advantage of this fact to explore here the effects of the NCX blocker KB-R7943 (KBR) at 22 and 37°C on the kinetics of Ca(2+) currents (ICa), cytosolic Ca(2+) ([Ca(2+)]c) transients, and catecholamine release from bovine chromaffin cells (BCCs) stimulated with high K(+), caffeine, or histamine. At 22°C, the effects of KBR on those parameters were meager or nil. However, at 37°C whereby the NCX is moving Ca(2+) at a rate fivefold higher than at 22°C, various of the effects of KBR were pronounced, namely: 1) no effects on ICa; 2) reduction of the [Ca(2+)]c transient amplitude and slowing down of its rate of clearance; 3) blockade of the K(+)-elicited quantal release of catecholamine; 4) blockade of burst catecholamine release elicited by K(+); 5) no effect on catecholamine release elicited by short K(+) pulses (1-2 s) and blockade of the responses produced by longer K(+) pulses (3-5 s); and 6) potentiation of secretion elicited by histamine or caffeine. Furthermore, the more selective NCX blocker SEA0400 also potentiated the secretory responses to caffeine. The results suggest that at physiological temperature the NCX substantially contributes to shaping the kinetics of [Ca(2+)]c transients and the exocytotic responses elicited by Ca(2+) entry through Ca(2+) channels as well as by Ca(2+) release from the endoplasmic reticulum.We thank the continued support of Fundación Teófilo Hernando, Madrid, Spain. This work was supported by the following grants to to A. G. García: 1) SAF 2010-21795, Ministerio de Economía y Competitividad, Spain; 2) RENEVAS-RETICS-RD06/0026, Instituto de Salud Carlos III, Spain; and 3) CABICYC Bioibérica/UAM. Also by grant from Ministerio de Economía y Competitividad No. 2010-18837 (to L. G. Gandía).Peer reviewe
    corecore