481 research outputs found

    Probing Wolf-Rayet Winds: Chandra/HETG X-Ray Spectra of WR 6

    Get PDF
    With a deep Chandra/HETGS exposure of WR 6, we have resolved emission lines whose profiles show that the X-rays originate from a uniformly expanding spherical wind of high X-ray-continuum optical depth. The presence of strong helium-like forbidden lines places the source of X-ray emission at tens to hundreds of stellar radii from the photosphere. Variability was present in X-rays and simultaneous optical photometry, but neither were correlated with the known period of the system or with each other. An enhanced abundance of sodium revealed nuclear processed material, a quantity related to the evolutionary state of the star. The characterization of the extent and nature of the hot plasma in WR 6 will help to pave the way to a more fundamental theoretical understanding of the winds and evolution of massive stars.Comment: Accepted by the Astrophysical Journa

    Quantitative and Functional Characterization of the Hyper-Conserved Protein of Prochlorococcus and Marine Synechococcus

    Get PDF
    A large fraction of any bacterial genome consists of hypothetical protein-coding open reading frames (ORFs). While most of these ORFs are present only in one or a few sequenced genomes, a few are conserved, often across large phylogenetic distances. Such conservation provides clues to likely uncharacterized cellular functions that need to be elucidated. Marine cyanobacteria from the Prochlorococcus/marine Synechococcus clade are dominant bacteria in oceanic waters and are significant contributors to global primary production. A Hyper Conserved Protein (PSHCP) of unknown function is 100% conserved at the amino acid level in genomes of Prochlorococcus/marine Synechococcus, but lacks homologs outside of this clade. In this study we investigated Prochlorococcus marinus strains MED4 and MIT 9313 and Synechococcus sp. strain WH 8102 for the transcription of the PSHCP gene using RT-Q-PCR, for the presence of the protein product through quantitative immunoblotting, and for the protein\u27s binding partners in a pull down assay. Significant transcription of the gene was detected in all strains. The PSHCP protein content varied between 8±1 fmol and 26±9 fmol per ug total protein, depending on the strain. The 50 S ribosomal protein L2, the Photosystem I protein PsaD and the Ycf48-like protein were found associated with the PSHCP protein in all strains and not appreciably or at all in control experiments. We hypothesize that PSHCP is a protein associated with the ribosome, and is possibly involved in photosystem assembly

    Quantitative and Functional Characterization of the Hyper-Conserved Protein of Prochlorococcus and Marine Synechococcus

    Get PDF
    A large fraction of any bacterial genome consists of hypothetical protein-coding open reading frames (ORFs). While most of these ORFs are present only in one or a few sequenced genomes, a few are conserved, often across large phylogenetic distances. Such conservation provides clues to likely uncharacterized cellular functions that need to be elucidated. Marine cyanobacteria from the Prochlorococcus/marine Synechococcus clade are dominant bacteria in oceanic waters and are significant contributors to global primary production. A Hyper Conserved Protein (PSHCP) of unknown function is 100% conserved at the amino acid level in genomes of Prochlorococcus/marine Synechococcus, but lacks homologs outside of this clade. In this study we investigated Prochlorococcus marinus strains MED4 and MIT 9313 and Synechococcus sp. strain WH 8102 for the transcription of the PSHCP gene using RT-Q-PCR, for the presence of the protein product through quantitative immunoblotting, and for the protein\u27s binding partners in a pull down assay. Significant transcription of the gene was detected in all strains. The PSHCP protein content varied between 8±1 fmol and 26±9 fmol per ug total protein, depending on the strain. The 50 S ribosomal protein L2, the Photosystem I protein PsaD and the Ycf48-like protein were found associated with the PSHCP protein in all strains and not appreciably or at all in control experiments. We hypothesize that PSHCP is a protein associated with the ribosome, and is possibly involved in photosystem assembly

    Credible practice of modeling and simulation in healthcare: ten rules from a multidisciplinary perspective

    Get PDF
    The complexities of modern biomedicine are rapidly increasing. Thus, modeling and simulation have become increasingly important as a strategy to understand and predict the trajectory of pathophysiology, disease genesis, and disease spread in support of clinical and policy decisions. In such cases, inappropriate or ill-placed trust in the model and simulation outcomes may result in negative outcomes, and hence illustrate the need to formalize the execution and communication of modeling and simulation practices. Although verification and validation have been generally accepted as significant components of a model\u27s credibility, they cannot be assumed to equate to a holistic credible practice, which includes activities that can impact comprehension and in-depth examination inherent in the development and reuse of the models. For the past several years, the Committee on Credible Practice of Modeling and Simulation in Healthcare, an interdisciplinary group seeded from a U.S. interagency initiative, has worked to codify best practices. Here, we provide Ten Rules for credible practice of modeling and simulation in healthcare developed from a comparative analysis by the Committee\u27s multidisciplinary membership, followed by a large stakeholder community survey. These rules establish a unified conceptual framework for modeling and simulation design, implementation, evaluation, dissemination and usage across the modeling and simulation life-cycle. While biomedical science and clinical care domains have somewhat different requirements and expectations for credible practice, our study converged on rules that would be useful across a broad swath of model types. In brief, the rules are: (1) Define context clearly. (2) Use contextually appropriate data. (3) Evaluate within context. (4) List limitations explicitly. (5) Use version control. (6) Document appropriately. (7) Disseminate broadly. (8) Get independent reviews. (9) Test competing implementations. (10) Conform to standards. Although some of these are common sense guidelines, we have found that many are often missed or misconstrued, even by seasoned practitioners. Computational models are already widely used in basic science to generate new biomedical knowledge. As they penetrate clinical care and healthcare policy, contributing to personalized and precision medicine, clinical safety will require established guidelines for the credible practice of modeling and simulation in healthcare

    An Improved Algorithm for Unmixing First-Order Reversal Curve Diagrams Using Principal Component Analysis

    Get PDF
    First‐order reversal curve (FORC) diagrams of synthetic binary mixtures with single‐domain, vortex state, and multidomain end‐members (EMs) were analyzed using principal component analysis (FORC‐PCA). Mixing proportions derived from FORC‐PCA are shown to deviate systematically from the known weight percent of EMs, which is caused by the lack of reversible magnetization contributions to the FORC distribution. The error in the mixing proportions can be corrected by applying PCA to the raw FORCs, rather than to the processed FORC diagram, thereby capturing both reversible and irreversible contributions to the signal. Here we develop a new practical implementation of the FORC‐PCA method that enables quantitative unmixing to be performed routinely on suites of FORC diagrams with up to four distinct EMs. The method provides access not only to the processed FORC diagram of each EM, but also to reconstructed FORCs, which enables objective criteria to be defined that aid identification of physically realistic EMs. We illustrate FORC‐PCA with examples of quantitative unmixing of magnetic components that will have widespread applicability in paleomagnetism and environmental magnetism.This work was supported financially by the Australian Research Council through grant DP160100805 and by the European Research Council under the European Union’s Seventh Framework Programme (FP/2007–2013)/ERC grant agreement 320750

    An improved selective culture medium enhances the isolation of Burkholderia pseudomallei from contaminated specimens.

    Get PDF
    Burkholderia pseudomallei is a Gram-negative environmental bacterium found in tropical climates that causes melioidosis. Culture remains the diagnostic gold standard, but isolation of B. pseudomallei from heavily contaminated sites, such as fecal specimens, can be difficult. We recently reported that B. pseudomallei is capable of infecting the gastrointestinal tract of mice and suggested that the same may be true in humans. Thus, there is a strong need for new culture techniques to allow for efficient detection of B. pseudomallei in fecal and other specimens. We found that the addition of norfloxacin, ampicillin, and polymyxin B to Ashdown's medium (NAP-A) resulted in increased specificity without affecting the growth of 25 B. pseudomallei strains. Furthermore, recovery of B. pseudomallei from human clinical specimens was not affected by the three additional antibiotics. Therefore, we conclude that NAP-A medium provides a new tool for more sensitive isolation of B. pseudomallei from heavily contaminated sites

    An Improved Algorithm for Unmixing First-Order Reversal Curve Diagrams Using Principal Component Analysis

    Get PDF
    First‐order reversal curve (FORC) diagrams of synthetic binary mixtures with single‐domain, vortex state, and multidomain end‐members (EMs) were analyzed using principal component analysis (FORC‐PCA). Mixing proportions derived from FORC‐PCA are shown to deviate systematically from the known weight percent of EMs, which is caused by the lack of reversible magnetization contributions to the FORC distribution. The error in the mixing proportions can be corrected by applying PCA to the raw FORCs, rather than to the processed FORC diagram, thereby capturing both reversible and irreversible contributions to the signal. Here we develop a new practical implementation of the FORC‐PCA method that enables quantitative unmixing to be performed routinely on suites of FORC diagrams with up to four distinct EMs. The method provides access not only to the processed FORC diagram of each EM, but also to reconstructed FORCs, which enables objective criteria to be defined that aid identification of physically realistic EMs. We illustrate FORC‐PCA with examples of quantitative unmixing of magnetic components that will have widespread applicability in paleomagnetism and environmental magnetism

    Specific Roles of XRCC4 Paralogs PAXX and XLF during V(D)J Recombination.

    Get PDF
    Paralog of XRCC4 and XLF (PAXX) is a member of the XRCC4 superfamily and plays a role in nonhomologous end-joining (NHEJ), a DNA repair pathway critical for lymphocyte antigen receptor gene assembly. Here, we find that the functions of PAXX and XLF in V(D)J recombination are masked by redundant joining activities. Thus, combined PAXX and XLF deficiency leads to an inability to join RAG-cleaved DNA ends. Additionally, we demonstrate that PAXX function in V(D)J recombination depends on its interaction with Ku. Importantly, we show that, unlike XLF, the role of PAXX during the repair of DNA breaks does not overlap with ATM and the RAG complex. Our findings illuminate the role of PAXX in V(D)J recombination and support a model in which PAXX and XLF function during NHEJ repair of DNA breaks, whereas XLF, the RAG complex, and the ATM-dependent DNA damage response promote end joining by stabilizing DNA ends.Cancer Research UK (Grant IDs: C6/A18796, C6946/A14492, C6/A18796), European Research Council (Grant ID: 310917), Wellcome Trust (Grant ID: WT092096), University of Cambridge, Institut PasteurThis is the final version of the article. It first appeared from Elsevier (Cell Press) via http://dx.doi.org/10.1016/j.celrep.2016.08.06

    Immunization expands B cells specific to HIV-1 V3 glycan in mice and macaques.

    Get PDF
    Broadly neutralizing monoclonal antibodies protect against infection with HIV-1 in animal models, suggesting that a vaccine that elicits these antibodies would be protective in humans. However, it has not yet been possible to induce adequate serological responses by vaccination. Here, to activate B cells that express precursors of broadly neutralizing antibodies within polyclonal repertoires, we developed an immunogen, RC1, that facilitates the recognition of the variable loop 3 (V3)-glycan patch on the envelope protein of HIV-1. RC1 conceals non-conserved immunodominant regions by the addition of glycans and/or multimerization on virus-like particles. Immunization of mice, rabbits and rhesus macaques with RC1 elicited serological responses that targeted the V3-glycan patch. Antibody cloning and cryo-electron microscopy structures of antibody-envelope complexes confirmed that immunization with RC1 expands clones of B cells that carry the anti-V3-glycan patch antibodies, which resemble precursors of human broadly neutralizing antibodies. Thus, RC1 may be a suitable priming immunogen for sequential vaccination strategies in the context of polyclonal repertoires

    CyberKnifeÂź enhanced conventionally fractionated chemoradiation for high grade glioma in close proximity to critical structures

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>With conventional radiation technique alone, it is difficult to deliver radical treatment (≄ 60 Gy) to gliomas that are close to critical structures without incurring the risk of late radiation induced complications. Temozolomide-related improvements in high-grade glioma survival have placed a higher premium on optimal radiation therapy delivery. We investigated the safety and efficacy of utilizing highly conformal and precise CyberKnife radiotherapy to enhance conventional radiotherapy in the treatment of high grade glioma.</p> <p>Methods</p> <p>Between January 2002 and January 2009, 24 patients with good performance status and high-grade gliomas in close proximity to critical structures (i.e. eyes, optic nerves, optic chiasm and brainstem) were treated with the CyberKnife. All patients received conventional radiation therapy following tumor resection, with a median dose of 50 Gy (range: 40 - 50.4 Gy). Subsequently, an additional dose of 10 Gy was delivered in 5 successive 2 Gy daily fractions utilizing the CyberKnife<sup>Âź </sup>image-guided radiosurgical system. The majority of patients (88%) received concurrent and/or adjuvant Temozolmide.</p> <p>Results</p> <p>During CyberKnife treatments, the mean number of radiation beams utilized was 173 and the mean number of verification images was 58. Among the 24 patients, the mean clinical treatment volume was 174 cc, the mean prescription isodose line was 73% and the mean percent target coverage was 94%. At a median follow-up of 23 months for the glioblastoma multiforme cohort, the median survival was 18 months and the two-year survival rate was 37%. At a median follow-up of 63 months for the anaplastic glioma cohort, the median survival has not been reached and the 4-year survival rate was 71%. There have been no severe late complications referable to this radiation regimen in these patients.</p> <p>Conclusion</p> <p>We utilized fractionated CyberKnife radiotherapy as an adjunct to conventional radiation to improve the targeting accuracy of high-grade glioma radiation treatment. This technique was safe, effective and allowed for optimal dose-delivery in our patients. The value of image-guided radiation therapy for the treatment of high-grade gliomas deserves further study.</p
    • 

    corecore