14 research outputs found

    An automatic gait analysis pipeline for wearable sensors: a pilot study in Parkinson’s disease

    Get PDF
    The use of wearable sensors allows continuous recordings of physical activity from participants in free-living or at-home clinical studies. The large amount of data collected demands automatic analysis pipelines to extract gait parameters that can be used as clinical endpoints. We introduce a deep learning-based automatic pipeline for wearables that processes tri-axial accelerometry data and extracts gait events—bout segmentation, initial contact (IC), and final contact (FC)—from a single sensor located at either the lower back (near L5), shin or wrist. The gait events detected are posteriorly used for gait parameter estimation, such as step time, length, and symmetry. We report results from a leave-one-subject-out (LOSO) validation on a pilot study dataset of five participants clinically diagnosed with Parkinson’s disease (PD) and six healthy controls (HC). Participants wore sensors at three body locations and walked on a pressure-sensing walkway to obtain reference gait data. Mean absolute errors (MAE) for the IC events ranged from 22.82 to 33.09 milliseconds (msecs) for the lower back sensor while for the shin and wrist sensors, MAE ranges were 28.56–64.66 and 40.19–72.50 msecs, respectively. For the FC-event detection, MAE ranges were 29.06–48.42, 40.19–72.70 and 36.06–60.18 msecs for the lumbar, wrist and shin sensors, respectively. Intraclass correlation coefficients, ICC(2,k), between the estimated parameters and the reference data resulted in good-to-excellent agreement (ICC ≄ 0.84) for the lumbar and shin sensors, excluding the double support time (ICC = 0.37 lumbar and 0.38 shin) and swing time (ICC = 0.55 lumbar and 0.59 shin). The wrist sensor also showed good agreements, but the ICCs were lower overall than for the other two sensors. Our proposed analysis pipeline has the potential to extract up to 100 gait-related parameters, and we expect our contribution will further support developments in the fields of wearable sensors, digital health, and remote monitoring in clinical trials

    Regional Brain and Spinal Cord Volume Loss in Spinocerebellar Ataxia Type 3

    Get PDF
    Background: Given that new therapeutic options for spinocerebellar ataxias are on the horizon, there is a need for markers that reflect disease-related alterations, in particular, in the preataxic stage, in which clinical scales are lacking sensitivity. Objective: The objective of this study was to quantify regional brain volumes and upper cervical spinal cord areas in spinocerebellar ataxia type 3 in vivo across the entire time course of the disease. Methods: We applied a brain segmentation approach that included a lobular subsegmentation of the cerebellum to magnetic resonance images of 210 ataxic and 48 preataxic spinocerebellar ataxia type 3 mutation carriers and 63 healthy controls. In addition, cervical cord cross-sectional areas were determined at 2 levels. Results: The metrics of cervical spinal cord segments C3 and C2, medulla oblongata, pons, and pallidum, and the cerebellar anterior lobe were reduced in preataxic mutation carriers compared with controls. Those of cervical spinal cord segments C2 and C3, medulla oblongata, pons, midbrain, cerebellar lobules crus II and X, cerebellar white matter, and pallidum were reduced in ataxic compared with nonataxic carriers. Of all metrics studied, pontine volume showed the steepest decline across the disease course. It covaried with ataxia severity, CAG repeat length, and age. The multivariate model derived from this analysis explained 46.33% of the variance of pontine volume. Conclusion: Regional brain and spinal cord tissue loss in spinocerebellar ataxia type 3 starts before ataxia onset. Pontine volume appears to be the most promising imaging biomarker candidate for interventional trials that aim at slowing the progression of spinocerebellar ataxia type 3. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society

    A systematic review of (semi-)automatic quality control of T1-weighted MRI scans

    Get PDF
    Purpose: Artifacts in magnetic resonance imaging (MRI) scans degrade image quality and thus negatively affect the outcome measures of clinical and research scanning. Considering the time-consuming and subjective nature of visual quality control (QC), multiple (semi-)automatic QC algorithms have been developed. This systematic review presents an overview of the available (semi-)automatic QC algorithms and software packages designed for raw, structural T1-weighted (T1w) MRI datasets. The objective of this review was to identify the differences among these algorithms in terms of their features of interest, performance, and benchmarks. Methods: We queried PubMed, EMBASE (Ovid), and Web of Science databases on the fifth of January 2023, and cross-checked reference lists of retrieved papers. Bias assessment was performed using PROBAST (Prediction model Risk Of Bias ASsessment Tool).// Results: A total of 18 distinct algorithms were identified, demonstrating significant variations in methods, features, datasets, and benchmarks. The algorithms were categorized into rule-based, classical machine learning-based, and deep learning-based approaches. Numerous unique features were defined, which can be roughly divided into features capturing entropy, contrast, and normative measures.// Conclusion: Due to dataset-specific optimization, it is challenging to draw broad conclusions about comparative performance. Additionally, large variations exist in the used datasets and benchmarks, further hindering direct algorithm comparison. The findings emphasize the need for standardization and comparative studies for advancing QC in MR imaging. Efforts should focus on identifying a dataset-independent measure as well as algorithm-independent methods for assessing the relative performance of different approaches
    corecore