97 research outputs found
Structure and allied properties of liquid carbondisulphide
Orientational model for liquid CS2 has been reviewed and shown that proper selection of centre structure produces molecular structure factors comparable with reference interaction site model (RISM) for both x-ray and neutron data even with the parallel alignment suggested by Suzuki and Egelstaff. With this justification of orientational model next centre structure factors were calculated from measured structure data and therefrom obtained various correlation functions including the pair potential and partial structures
Magnetohydrodynamic kink waves in two-dimensional non-uniform prominence threads
We analyse the oscillatory properties of resonantly damped transverse kink
oscillations in two-dimensional prominence threads. The fine structures are
modelled as cylindrically symmetric magnetic flux tubes with a dense central
part with prominence plasma properties and an evacuated part, both surrounded
by coronal plasma. The equilibrium density is allowed to vary non-uniformly in
both the transverse and the longitudinal directions.We examine the influence of
longitudinal density structuring on periods, damping times, and damping rates
for transverse kink modes computed by numerically solving the linear resistive
magnetohydrodynamic (MHD) equations. The relevant parameters are the length of
the thread and the density in the evacuated part of the tube, two quantities
that are difficult to directly estimate from observations. We find that both of
them strongly influence the oscillatory periods and damping times, and to a
lesser extent the damping ratios. The analysis of the spatial distribution of
perturbations and of the energy flux into the resonances allows us to explain
the obtained damping times. Implications for prominence seismology, the physics
of resonantly damped kink modes in two-dimensional magnetic flux tubes, and the
heating of prominence plasmas are discussed.Comment: 12 pages, 9 figures, A&A accepte
Effects of Steady Flow on Magnetoacoustic-Gravity Surface Waves: I. The Weak Field Case
Magnetoacoustic gravity (MAG) waves have been studied for some time. In this article, we investigate the effect that a shear flow at a tangential discontinuity embedded in a gravitationally stratified and magnetised plasma has on MAG surface waves. The dispersion relation found is algebraically analogous to the relation of the non-flow cases obtained by Miles and Roberts (Solar Phys.141, 205, 1992), except for the introduction of a Doppler-shifted frequency for the eigenvalue. This feature, however, introduces rather interesting physics, including the asymmetric presence of forward- and backward-propagating surface waves. We find that increasing the equilibrium flow speed leads to a shift in the permitted regions of propagation for surface waves. For most wave number combinations this leads to the fast mode being completely removed, as well as more limited phase speed regimes for slow-mode propagation. We also find that upon increasing the flow, the phase speeds of the backward propagating waves are increased. Eventually, at high enough flow speeds, the wave’s direction of propagation is reversed and is in the positive direction. However, the phase speed of the forward-propagating wave remains mainly the same. For strong enough flows we find that the Kelvin–Helmholtz instability can also occur when the forward- and backward-propagating modes couple
Physics of Solar Prominences: II - Magnetic Structure and Dynamics
Observations and models of solar prominences are reviewed. We focus on
non-eruptive prominences, and describe recent progress in four areas of
prominence research: (1) magnetic structure deduced from observations and
models, (2) the dynamics of prominence plasmas (formation and flows), (3)
Magneto-hydrodynamic (MHD) waves in prominences and (4) the formation and
large-scale patterns of the filament channels in which prominences are located.
Finally, several outstanding issues in prominence research are discussed, along
with observations and models required to resolve them.Comment: 75 pages, 31 pictures, review pape
Propagation of leaky MHD waves at discontinuities with tilted magnetic field
We investigate the characteristics of magneto-acoustic surface waves propagating at a single density interface, in the presence of an inclined magnetic field. For linear wave propagation, the dispersion relation is obtained and analytical solutions are derived for small inclination angle. The inclination of the field renders the frequency of the waves complex, where the imaginary part describes wave attenuation, due to lateral energy leakage
Action to protect the independence and integrity of global health research
Storeng KT, Abimbola S, Balabanova D, et al. Action to protect the independence and integrity of global health research. BMJ GLOBAL HEALTH. 2019;4(3): e001746
- …