87 research outputs found

    An Advanced Microstructural and Electrochemical Datasheet on 18650 Li-Ion Batteries with Nickel-Rich NMC811 Cathodes and Graphite-Silicon Anodes

    Get PDF
    Cylindrical lithium-ion batteries are used across a wide range of applications from spacesuits to automotive vehicles. Specifically, many manufacturers are producing cells in the 18650 geometry i.e. a steel cylinder of diameter and length ca. 18 and 65 mm, respectively. One example is the LG Chem INR18650 MJ1 (nominal values: 3.5 Ah, 3.6 V, 12.2 Wh). This article describes the electrochemical performance and microstructural assembly of such cells, where all the under-pinning data is made openly available for the benefit of the wider community. The charge-discharge capacity is reported for 400 operational cycles via the manufacturer's guidelines along with full-cell, individual electrode coating and particle 3D imaging. Within the electrochemical data, the distinction between protocol transition, beginning-of-life (BoL) capacity loss, and prolonged degradation is outlined and, subsequently, each aspect of the microstructural characterization is broken down into key metrics that may aid in understanding such degradation (e.g. electrode assembly layers, coating thickness, areal loading, particle size and shape). All key information is summarized in a quick-access advanced datasheet in order to provide an initial baseline of information to guide research paths, inform experiments and aid computational modellers

    Data for an Advanced Microstructural and Electrochemical Datasheet on 18650 Li-ion Batteries with Nickel-Rich NMC811 Cathodes and Graphite-Silicon Anodes

    Get PDF
    The data presented here were collected from a commercial LG Chem cylindrical INR18650 MJ1 lithium-ion (Li-ion) battery (approximate nominal specifications: 3.5 Ah, 3.6 V, 12.2 Wh). Electrochemical and microstructural information is presented, the latter collected across several length scales using X-ray computed tomography (CT): from cell to particle. One cell-level tomogram, four assembly-level and two electrode/particle-level 3D datasets are available; all data was collected in the pristine state. The electrochemical data consists of the full current and voltage charge-discharge curves for 400 operational cycles. All data has been made freely available via a repository [10.5522/04/c.4994651] in order to aid in the development of improved computational models for commercially-relevant Li-ion battery materials

    In-situ X-ray tomographic imaging study of gas and structural evolution in a commercial Li-ion pouch cell

    Get PDF
    Gas generation within Li-ion batteries (LIB) can lead to an increase in resistance, thereby, reducing their cycle lifetime. The chance of catastrophic failure via internal gas evolution may increase as a function of cell size and capacity. However, in-situ studies of gas evolution at the cell level are very limited due to limited number of techniques that can effectively probe this. Hence, for the first time, we employed high-energy X-ray tomography to non-destructively observe the structural evolution (gas and electrodes) as a function of cycle numbers for a 400 mAh commercial Li-ion pouch cell. Gas agglomeration led to cell deformation in different areas were observed in 4D (3D + time), the subsequent quantification including the volume fraction, surface area and thickness showed a heterogeneous gas distribution, revealing the degradation mechanism involving the coalescence of gas. This study demonstrates a feasible case of the use of lab-based X-ray to investigate the cell degradation and monitor state of health (SOH) by tracking the thickness in-situ, providing practical guidance for designing safer pouch cells

    Quantum states and linear response in dc and electromagnetic fields for charge current and spin polarization of electrons at Bi/Si interface with giant spin-orbit coupling

    Full text link
    An expansion of the nearly free-electron model constructed by Frantzeskakis, Pons and Grioni [Phys. Rev. B {\bf 82}, 085440 (2010)] describing quantum states at Bi/Si(111) interface with giant spin-orbit coupling is developed and applied for the band structure and spin polarization calculation, as well as for the linear response analysis for charge current and induced spin caused by dc field and by electromagnetic radiation. It is found that the large spin-orbit coupling in this system may allow resolving the spin-dependent properties even at room temperature and at realistic collision rate. The geometry of the atomic lattice combined with spin-orbit coupling leads to an anisotropic response both for current and spin components related to the orientation of the external field. The in-plane dc electric field produces only the in-plane components of spin in the sample while both the in-plane and out-of-plane spin components can be excited by normally propagating electromagnetic wave with different polarizations.Comment: 10 pages, 9 figure

    Exploring the band structure of Wurtzite InAs nanowires using photocurrent spectroscopy

    Get PDF
    We use polarized photocurrent spectroscopy in a nanowire device to investigate the band structure of hexagonal Wurtzite InAs. Signatures of optical transitions between four valence bands and two conduction bands are observed which are consistent with the symmetries expected from group theory. The ground state transition energy identified from photocurrent spectra is seen to be consistent with photoluminescence emitted from a cluster of nanowires from the same growth substrate. From the energies of the observed bands we determine the spin orbit and crystal field energies in Wurtzite InAs. This information is vital to the development of crystal phase engineering of this important III-V semiconductor.ER

    Competing Ultrafast Energy Relaxation Pathways in Photoexcited Graphene

    Get PDF
    For most optoelectronic applications of graphene a thorough understanding of the processes that govern energy relaxation of photoexcited carriers is essential. The ultrafast energy relaxation in graphene occurs through two competing pathways: carrier-carrier scattering -- creating an elevated carrier temperature -- and optical phonon emission. At present, it is not clear what determines the dominating relaxation pathway. Here we reach a unifying picture of the ultrafast energy relaxation by investigating the terahertz photoconductivity, while varying the Fermi energy, photon energy, and fluence over a wide range. We find that sufficiently low fluence (≲\lesssim 4 μ\muJ/cm2^2) in conjunction with sufficiently high Fermi energy (≳\gtrsim 0.1 eV) gives rise to energy relaxation that is dominated by carrier-carrier scattering, which leads to efficient carrier heating. Upon increasing the fluence or decreasing the Fermi energy, the carrier heating efficiency decreases, presumably due to energy relaxation that becomes increasingly dominated by phonon emission. Carrier heating through carrier-carrier scattering accounts for the negative photoconductivity for doped graphene observed at terahertz frequencies. We present a simple model that reproduces the data for a wide range of Fermi levels and excitation energies, and allows us to qualitatively assess how the branching ratio between the two distinct relaxation pathways depends on excitation fluence and Fermi energy.Comment: Nano Letters 201

    Virtual unrolling of spirally-wound lithium-ion cells for correlative degradation studies and predictive fault detection

    Get PDF
    A spirally-wound LG 18650 MJ1 lithium-ion battery was imaged in 3D before and after 1061 cycles using X-ray computed tomography. The battery's capacity had faded to 79% of its initial value and some of that fade was attributed to delamination in the innermost region of the ‘jelly-roll’ structure. A method for virtually unrolling the jelly-roll and analysing it in different coordinates is presented. The method allows efficient comparison of the position and shape of the electrodes at different times and highlights imperfections present in the jelly-roll before cycling which were shown to nucleate the delamination of the electrode

    Immunotoxin-Induced Ablation of the Intrinsically Photosensitive Retinal Ganglion Cells in Rhesus Monkeys

    Get PDF
    Purpose: Intrinsically photosensitive retinal ganglion cells (ipRGCs) contain the photopigment melanopsin, and are primarily involved in non-image forming functions, such as the pupillary light reflex and circadian rhythm entrainment. The goal of this study was to develop and validate a targeted ipRGC immunotoxin to ultimately examine the role of ipRGCs in macaque monkeys.Methods: An immunotoxin for the macaque melanopsin gene (OPN4), consisting of a saporin-conjugated antibody directed at the N-terminus, was prepared in solutions of 0.316, 1, 3.16, 10, and 50 μg in vehicle, and delivered intravitreally to the right eye of six rhesus monkeys, respectively. Left eyes were injected with vehicle only. The pupillary light reflex (PLR), the ipRGC-driven post illumination pupil response (PIPR), and electroretinograms (ERGs) were recorded before and after injection. For pupil measurements, 1 and 5 s pulses of light were presented to the dilated right eye while the left pupil was imaged. Stimulation included 651 nm (133 cd/m2), and 4 intensities of 456 nm (16–500 cd/m2) light. Maximum pupil constriction and the 6 s PIPR were calculated. Retinal imaging was performed with optical coherence tomography (OCT), and eyes underwent OPN4 immunohistochemistry to evaluate immunotoxin specificity and ipRGC loss.Results: Before injection, animals showed robust pupil responses to 1 and 5 s blue light. After injection, baseline pupil size increased 12 ± 17%, maximum pupil constriction decreased, and the PIPR, a marker of ipRGC activity, was eliminated in all but the lowest immunotoxin concentration. For the highest concentrations, some inflammation and structural changes were observed with OCT, while eyes injected with lower concentrations appeared normal. ERG responses showed better preserved retinal function with lower concentrations. Immunohistochemistry showed 80–100% ipRGC elimination with the higher doses being more effective; however this could be partly due to inflammation that occurred at the higher concentrations.Conclusion: Findings demonstrated that the OPN4 macaque immunotoxin was specific for ipRGCs, and induced a graded reduction in the PLR, as well as, in ipRGC-driven pupil response with concentration. Further investigation of the effects of ipRGC ablation on ocular and systemic circadian rhythms and the pupil in rhesus monkeys will provide a better understanding of the role of ipRGCs in primates
    • …
    corecore