48 research outputs found

    Characteristics of Klebsiella pneumoniae harboring QnrB32, Aac(6’)-Ib-cr, GyrA and CTX-M-22 genes

    Get PDF
    Quinolone resistance in members of the Enterobacteriaceae family is mostly due to mutations in the quinolone resistance-determining regions of topoisomerase genes. CTX-M-22 is a member of the CTX-M family which can reduce extended-spectrum β-lactamase (ESBL) production and modulate antibiotic resistance, resulting in low ceftazidime minimum inhibitory concentrations (MICs). There are four different genes in Klebsiella pneumoniae (KP4707) including qnrB32 (novel qnr allele gene, HQ704413), aac(6’)-Ib-cr (novel aac(6’)-Ib allele gene, HQ680690), gyrA (novel gyrA allele gene, HQ680691) and CTX-M-22 gene. Five point amino acid mutations Arn(N)27 → Leu(L), Val(V)129 → Ala(A), Iie(I)142 → Met(M), Gly(G)188 → Arg(R), Val(V)212 → Iie(I) were observed in the qnr32 gene when compared to qnrB1. Of all qnrB alleles, a novel variant of the qnrB32 gene, with qnrB31, had the highest amino acid homology. Three point amino acid mutations including Trp(W)105 → Arg(R), Asp(D)182 → Tyr(Y) and Val(V)201 → Asp(D) were observed in aac(6’)-Ib-cr gene, when compared to GenBank number AF479774. New variants of qnr32, aac(6’)-Ib-cr, gyrA and CTX-M-22 or other genotype determinants continuously appear in different genomic sites and also outside the Enterobacteriaceae family

    Fracture behaviour of fibre-reinforced composite materials subjected to shear loading: an experimental and numerical study

    Get PDF
    Compared to fibre-dominated behaviour, a response dominated by the matrix under shear loading can considerably limit the load-bearing capability and restrict the utilisation of composite materials. It is therefore practically significative to understand the shear response of composite materials. This paper presents a detailed experimental and numerical investigation on the fracture behaviour of composite laminates subjected to shear-dominated loading. Composite specimen with a lay-up of [(0/90)4/0]S are tested using the V-Notched Rail (VRS) shear test method. Subsequently, the Scanning Electron Microscope (SEM) investigation is also conducted on the fracture surfaces of the tested specimens to get insights into the damage mechanisms due to shear loading. In addition, a high-fidelity computational damage model is developed to predict the shear fracture behaviour of fibre-reinforced composites. Simulation results, including loading response, strain distribution and shear fracture, well correlated with experimental results, which demonstrates the predictive capability of the developed elastic-plastic damage model

    BTZ-copolymer loaded graphene aerogel as new type Green and metal-freevisible light photocatalyst

    Get PDF
    This paper reports a new class of efficient, green and metal-free visible-light photocatalyst made from graphene aerogel (GA) doped with a conjugated porous polymer (CMPs). Hence, we report the synthesis of a benzothiadiazole (BTZ)-based CMP loaded into GA via a one-step hydrothermal reaction between 2D graphene oxide (GO) and the CMP, performed through a green process and under mild conditions. The as-prepared GA showed a bathochromic shift in the UV–vis diffraction reflectance spectroscopy (DRS) absorption edge to 628.5 nm, demonstrating its ability to absorb light in the visible region. SEM, TEM, XPS, EDX mapping results further showed the successful loading of the BTZ-based CMP in the GA array. The synthesized GA was used as a 3D structured photocatalyst for the visible-light-driven photodecomposition of methyl orange (MO) with an efficiency of 89.2% (5 wt% CMP). When compared to that of the pure CMP (86.9%), a comparable yet small increase in the efficiency was observed. This is due to a synergistic effect between GO and loaded polymer in GA array upon the formation of CMPGA hybrid structure via chemical interaction between BTZ-Py and GO throughout the mild hydrothermal reaction, and the enhanced photocatalytic activity exhibited from 1 mg equivalent polymer in the CMPGA2 hybrid when compared to the 20 mg pure polymer. Upon repeated use, the depreciation in photocatalytic activity was low with a <5% drop over 3 cycles. These results showed the CMP-loaded GA as an efficient metal-free photocatalyst and a promising material for further investigation into other photocatalytic applications

    Effects of contact friction and ply blocking on the crush behaviour of thin-walled composite structures: a numerical study

    Get PDF
    The present paper presents a three-dimensional composite damage model for predicting the crush response of thin-walled structures, i.e., cylindrical tubes, manufactured employing fibre-reinforced polymer–matrix composites. This computational model is based upon a Continuum Damage Mechanics (CDM) approach and accounts for both the intralaminar and interlaminar damage as well as nonlinear behaviour that occur in the composite materials. Experimental data, obtained from published literature, are employed to validate the proposed composite damage model. A comparison between the experimental and computationally predicted results, including the load response, energy absorption and damage morphology, shows good agreement. Subsequently, the validated computational model is employed to investigate the effects of contact friction and ply blocking on the crush response of thin-walled composite structures. The results reveal that the friction between the tube/platen surfaces has a positive effect on the crushing performance of the composite structures and the ply blocking can somehow inhibit the crushing performance of the investigated composite structures

    Comparison of different quasi-static loading conditions of additively manufactured composite hexagonal and auxetic cellular structures

    Get PDF
    Auxetic cellular structures have the potential to revolutionise sandwich panel cores due to their potential superior energy absorption capability. Because of their negative Poisson's ratio, auxetics behave counterintuitively and contract orthogonally under an applied compressive force, resulting in a densification of material in the vicinity of the applied load. This study investigates three cellular structures and compares their compressive energy absorbing characteristics under in-plane and axial loading conditions. Three unit cell topologies are considered; a conventional hexagonal, re-entrant and double arrowhead auxetic structures. The samples were additively manufactured using two different materials, a conventional Nylon and a carbon fibre reinforced composite alternative (Onyx). Finite element simulations are experimentally validated under out of and in-plane loading conditions and the double arrowhead (auxetic) structure is shown to exhibit comparatively superior energy absorption. For the carbon fibre reinforced material, Onyx, the specific energy absorbed by the double arrowhead geometry was 125% and 244% greater than the hexagonal (non-auxetic) and re-entrant (auxetic) structures respectively

    A review of high‐velocity impact on fiber‐reinforced textile composites: potential for aero engine applications

    Get PDF
    Considerable research has indicated that fiber-reinforced textile composites are significantly beneficial to the aerospace industry, especially aero engines, due to their high specific strength, specific stiffness, corrosion resistance, and fatigue resistance. However, damage caused by high-velocity impacts is a critical limitation factor in a wide range of applications. This paper presents an overview of the development, material characterizations, and applications of fiber-reinforced textile composites for aero engines. These textile composites are classified into four categories including two-dimensional (2D) woven composites, 2D braided composites, 3D woven composites, and 3D braided composites. The complex damage mechanisms of these composite materials due to high-velocity impacts are discussed in detail as well

    The Kalanchoe genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism

    Get PDF
    Crassulacean acid metabolism (CAM) is a water-use efficient adaptation of photosynthesis that has evolved independently many times in diverse lineages of flowering plants. We hypothesize that convergent evolution of protein sequence and temporal gene expression underpins the independent emergences of CAM from C3 photosynthesis. To test this hypothesis, we generate a de novo genome assembly and genome-wide transcript expression data for Kalanchoë fedtschenkoi, an obligate CAM species within the core eudicots with a relatively small genome (~260 Mb). Our comparative analyses identify signatures of convergence in protein sequence and re-scheduling of diel transcript expression of genes involved in nocturnal CO2 fixation, stomatal movement, heat tolerance, circadian clock, and carbohydrate metabolism in K. fedtschenkoi and other CAM species in comparison with non-CAM species. These findings provide new insights into molecular convergence and building blocks of CAM and will facilitate CAM-into-C3 photosynthesis engineering to enhance water-use efficiency in crops

    Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees

    Get PDF
    Data accessibility statement: Full census data are available upon reasonable request from the ForestGEO data portal, http://ctfs.si.edu/datarequest/ We thank Margie Mayfield, three anonymous reviewers and Jacob Weiner for constructive comments on the manuscript. This study was financially supported by the National Key R&D Program of China (2017YFC0506100), the National Natural Science Foundation of China (31622014 and 31570426), and the Fundamental Research Funds for the Central Universities (17lgzd24) to CC. XW was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB3103). DS was supported by the Czech Science Foundation (grant no. 16-26369S). Yves Rosseel provided us valuable suggestions on using the lavaan package conducting SEM analyses. Funding and citation information for each forest plot is available in the Supplementary Information Text 1.Peer reviewedPostprin

    Synthesis of Nickel Powders: From Spheres to Monodispersed Clusters

    No full text
    Well dispersed nickel powders with uniform size were synthesized using hydrazine hydrate as reducing reagent, with no surfactant introduced. The morphology of the products could be controlled from smooth spheres to flowerlike clusters by simply choosing solvent and adjusting the molar ratio of NaOH/Ni or N2H4/Ni. A two-step reduction process was proposed for the formation mechanism based on the experimental results. The crystal phase of the as-prepared sample was characterized by XRD. The morphology and microstructure were inspected with FESEM. The magnetic properties were recorded using VSM. The novel flowerlike clusters exhibit unique magnetic properties
    corecore