256 research outputs found

    Sludge disinfection using electrical thermal treatment: The role of ohmic heating

    Get PDF
    Electrical heating has been proposed as a potential method for pathogen inactivation in human waste sludge, especially in decentralized wastewater treatment systems. In this study, we investigated the heat production and E. coli inactivation in wastewater sludge using electrical thermal treatment. Various concentrations of NaCl and NH_4Cl were tested as electrolyte to enhance conductivity in sludge mixtures. At same voltage input (18 V), sludge treated with direct current (DC) exhibited slower ascent of temperature and lower energy efficiencies for heat production comparing to that using alternate current (AC). However, DC power showed better performance in E. coli inactivation due to electrochemical inactivation in addition to thermal inactivation. Greater than 6log_(10) removal of E. coli was demonstrated within 2 h using 0.15 M of NaCl as electrolyte by AC or DC power. The heat production in sludge was modeled using Maxwell–Eucken and effective medium theory based on the effective electrical conductivity in the two-phase (liquid and solid) sludge mixtures. The results showed that the water and heat loss is a critical consideration in modeling of sludge temperature using ohmic heating. The experimental data also suggested that the models are less applicable to DC power because the electrochemical reactions triggered by DC reduce the concentration of NH_4+ and other ions that serve as electrolyte. The results of this study contribute to the development of engineering strategies for human waste sludge management

    Oxytocin is an age-specific circulating hormone that is necessary for muscle maintenance and regeneration.

    Get PDF
    The regenerative capacity of skeletal muscle declines with age. Previous studies suggest that this process can be reversed by exposure to young circulation; however, systemic age-specific factors responsible for this phenomenon are largely unknown. Here we report that oxytocin--a hormone best known for its role in lactation, parturition and social behaviours--is required for proper muscle tissue regeneration and homeostasis, and that plasma levels of oxytocin decline with age. Inhibition of oxytocin signalling in young animals reduces muscle regeneration, whereas systemic administration of oxytocin rapidly improves muscle regeneration by enhancing aged muscle stem cell activation/proliferation through activation of the MAPK/ERK signalling pathway. We further show that the genetic lack of oxytocin does not cause a developmental defect in muscle but instead leads to premature sarcopenia. Considering that oxytocin is an FDA-approved drug, this work reveals a potential novel and safe way to combat or prevent skeletal muscle ageing

    Semiparametric inference of effective reproduction number dynamics from wastewater pathogen surveillance data

    Full text link
    Concentrations of pathogen genomes measured in wastewater have recently become available as a new data source to use when modeling the spread of infectious diseases. One promising use for this data source is inference of the effective reproduction number, the average number of individuals a newly infected person will infect. We propose a model where new infections arrive according to a time-varying immigration rate which can be interpreted as a compound parameter equal to the product of the proportion of susceptibles in the population and the transmission rate. This model allows us to estimate the effective reproduction number from concentrations of pathogen genomes while avoiding difficult to verify assumptions about the dynamics of the susceptible population. As a byproduct of our primary goal, we also produce a new model for estimating the effective reproduction number from case data using the same framework. We test this modeling framework in an agent-based simulation study with a realistic data generating mechanism which accounts for the time-varying dynamics of pathogen shedding. Finally, we apply our new model to estimating the effective reproduction number of SARS-CoV-2 in Los Angeles, California, using pathogen RNA concentrations collected from a large wastewater treatment facility.Comment: 23 pages, 6 figures in main te

    What's New in Endocrinology: The Chromaffin Cell

    Get PDF
    Recent advances in understanding the intracellular and intercellular features of adrenal chromatin cells as stress transducers are reviewed here, along with their implications for endocrine function in other tissues and organs participating in endocrine regulation in the mammalian organism

    Sludge disinfection using electrical thermal treatment: The role of ohmic heating

    Get PDF
    Electrical heating has been proposed as a potential method for pathogen inactivation in human waste sludge, especially in decentralized wastewater treatment systems. In this study, we investigated the heat production and E. coli inactivation in wastewater sludge using electrical thermal treatment. Various concentrations of NaCl and NH_4Cl were tested as electrolyte to enhance conductivity in sludge mixtures. At same voltage input (18 V), sludge treated with direct current (DC) exhibited slower ascent of temperature and lower energy efficiencies for heat production comparing to that using alternate current (AC). However, DC power showed better performance in E. coli inactivation due to electrochemical inactivation in addition to thermal inactivation. Greater than 6log_(10) removal of E. coli was demonstrated within 2 h using 0.15 M of NaCl as electrolyte by AC or DC power. The heat production in sludge was modeled using Maxwell–Eucken and effective medium theory based on the effective electrical conductivity in the two-phase (liquid and solid) sludge mixtures. The results showed that the water and heat loss is a critical consideration in modeling of sludge temperature using ohmic heating. The experimental data also suggested that the models are less applicable to DC power because the electrochemical reactions triggered by DC reduce the concentration of NH_4+ and other ions that serve as electrolyte. The results of this study contribute to the development of engineering strategies for human waste sludge management

    Evaluation of recreational health risk in coastal waters based on enterococcus densities and bathing patterns.

    Get PDF
    We constructed a simulation model to compute the incidences of highly credible gastrointestinal illness (HCGI) in recreational bathers at two intermittently contaminated beaches of Orange County, California. Assumptions regarding spatial and temporal bathing patterns were used to determine exposure levels over a 31-month study period. Illness rates were calculated by applying previously reported relationships between enterococcus density and HCGI risk to the exposure data. Peak enterococcus concentrations occurred in late winter and early spring, but model results showed that most HCGI cases occurred during summer, attributable to elevated number of exposures. Approximately 99% of the 95,010 illness cases occurred when beaches were open. Model runs were insensitive to 0-10% swimming activity assumed during beach closure days. Comparable illness rates resulted under clustered and uniform bather distribution scenarios. HCGI attack rates were within federal guidelines of tolerable risk when averaged over the study period. However, tolerable risk thresholds were exceeded for 27 total days and periods of at least 6 consecutive days. Illness estimates were sensitive to the functional form and magnitude of the enterococcus density-HCGI relationships. The results of this study contribute to an understanding of recreational health risk in coastal waters

    High-throughput functional analysis of CFTR and other apically localized proteins in iPSC-derived human intestinal organoids

    Get PDF
    Induced Pluripotent Stem Cells (iPSCs) can be differentiated into epithelial organoids that recapitulate the relevant context for CFTR and enable testing of therapies targeting Cystic Fibrosis (CF)-causing mutant proteins. However, to date, CF-iPSC-derived organoids have only been used to study pharmacological modulation of mutant CFTR channel activity and not the activity of other disease-relevant membrane protein constituents. In the current work, we describe a high-throughput, fluorescence-based assay of CFTR channel activity in iPSC-derived intestinal organoids and describe how this method can be adapted to study other apical membrane proteins. Specifically, we show how this assay can be employed to study CFTR and ENaC channels and an electrogenic acid transporter in the same iPSC-derived intestinal tissue. This phenotypic platform promises to expand CF therapy discovery to include strategies that target multiple determinants of epithelial fluid transport

    Sunlight-Activated Propidium Monoazide Pretreatment for Differentiation of Viable and Dead Bacteria by Quantitative Real-Time Polymerase Chain Reaction

    Get PDF
    Polymerase chain reaction (PCR)-based methods have been developed and increasingly used for rapid and sensitive detection of pathogens in water samples to better protect public health. A propidium monoazide (PMA) pretreatment can help to differentiate between viable and dead cells, but the photoactivation of PMA normally requires the use of an energy-consuming halogen light, which is not suitable for off-the-grid applications. Herein, we investigate sunlight as an alternative light source. Our results suggest that sunlight can successfully activate PMA, and the sunlight-activated PMA pretreatment can effectively reduce the amplification of DNA derived from dead cells in PCR assays. Potentially, a sunlight-activated PMA pretreatment unit can be integrated into a lab-on-a-chip PCR device for off-the-grid microbial detection and quantification
    • …
    corecore