2,430 research outputs found

    THE AMBIGUITY IN FOREST PROFILES AND XTINCTION ESTIMATED FROM MULTIBASELINE INTERFEROMETRIC SAR

    Get PDF
    This paper demonstrates by simulation that in the estimation of vegetation profiles from multibaseline interferometric synthetic aperture radar (InSAR), the peak extinction coefficient is poorly determined for typical interferometric coherence and phase accuracies. This coefficient determines overall density and affects the relative density profiles estimated from interferometry. This paper shows that a given radar power profile gives rise to a family of vegetation density profiles, depending on the peak extinction assumed. It is further  demonstrated that estimating the peak extinction requires coherence accuracies of better than 0.1% and phase accuracies of better than a few tenths of a degree, both of which exceed the performance of typical or envisioned SAR systems. Two recommended approaches to profile production with InSAR are 1) use the radar power profile instead of the vegetation density profile for biomass estimation and other ecosystem characterization (in analogy to LIDAR power which is most frequently used for lidar studies of biomass) or 2) apply external information to establish the extinction characteristics needed for vegetation density profiles.Esse artigo procura demonstrar, por simulação, que na estimativa de perfis de volume da vegetação por interferometria  com múltiplas linhas de base, o pico de extinção não é adequadamente determinado pela coerência interferométrica e fase, com acurácias típicas de InSAR. Esse pico determina a densidade global, afetando os perfis de densidade relativa da vegetação estimados por interferometria. Esse trabalho mostra que para um dado perfil de potência-radar há uma série de perfis de densidade da vegetação, dependendo do pico de extinção assumido. É ainda demonstrado que a estimativa do pico de  extinção requer exatidões de coerência melhores que 0,1%, bem como, de acurácias de fases que alguns décimos de graus, valores esses que atualmente excedem o desempenho de sistemas SAR em operação ou aqueles previstos. As duas abordagens recomendadas para a produção de perfis com InSAR são: (1) utilizar o perfil-radar, ao invés do perfil de densidade de vegetação, para estimação de biomassa e outras caracterizações de ecossistema (em nalogia à potência-lidar, a qual é mais  frequentemente utilizada nos estudos de biomassa baseados em LIDAR); ou (2) aplicar informação externa para estabelecer as características de extinção necessárias aos perfis de densidade de vegetação

    Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR Collaboration

    Get PDF
    The Numerical-Relativity-Analytical-Relativity (NRAR) collaboration is a joint effort between members of the numerical relativity, analytical relativity and gravitational-wave data analysis communities. The goal of the NRAR collaboration is to produce numerical-relativity simulations of compact binaries and use them to develop accurate analytical templates for the LIGO/Virgo Collaboration to use in detecting gravitational-wave signals and extracting astrophysical information from them. We describe the results of the first stage of the NRAR project, which focused on producing an initial set of numerical waveforms from binary black holes with moderate mass ratios and spins, as well as one non-spinning binary configuration which has a mass ratio of 10. All of the numerical waveforms are analysed in a uniform and consistent manner, with numerical errors evaluated using an analysis code created by members of the NRAR collaboration. We compare previously-calibrated, non-precessing analytical waveforms, notably the effective-one-body (EOB) and phenomenological template families, to the newly-produced numerical waveforms. We find that when the binary's total mass is ~100-200 solar masses, current EOB and phenomenological models of spinning, non-precessing binary waveforms have overlaps above 99% (for advanced LIGO) with all of the non-precessing-binary numerical waveforms with mass ratios <= 4, when maximizing over binary parameters. This implies that the loss of event rate due to modelling error is below 3%. Moreover, the non-spinning EOB waveforms previously calibrated to five non-spinning waveforms with mass ratio smaller than 6 have overlaps above 99.7% with the numerical waveform with a mass ratio of 10, without even maximizing on the binary parameters.Comment: 51 pages, 10 figures; published versio

    \textsc{MaGe} - a {\sc Geant4}-based Monte Carlo Application Framework for Low-background Germanium Experiments

    Full text link
    We describe a physics simulation software framework, MAGE, that is based on the GEANT4 simulation toolkit. MAGE is used to simulate the response of ultra-low radioactive background radiation detectors to ionizing radiation, specifically the MAJORANA and GERDA neutrinoless double-beta decay experiments. MAJORANA and GERDA use high-purity germanium detectors to search for the neutrinoless double-beta decay of 76Ge, and MAGE is jointly developed between these two collaborations. The MAGE framework contains the geometry models of common objects, prototypes, test stands, and the actual experiments. It also implements customized event generators, GEANT4 physics lists, and output formats. All of these features are available as class libraries that are typically compiled into a single executable. The user selects the particular experimental setup implementation at run-time via macros. The combination of all these common classes into one framework reduces duplication of efforts, eases comparison between simulated data and experiment, and simplifies the addition of new detectors to be simulated. This paper focuses on the software framework, custom event generators, and physics lists.Comment: 12 pages, 6 figure

    Safety and Efficacy of Axicabtagene Ciloleucel versus Standard of Care in Patients 65 Years of Age or Older with Relapsed/Refractory Large B-Cell Lymphoma

    Get PDF
    Purpose: Older patients with relapsed/refractory (R/R) large B-cell lymphoma (LBCL) may be considered ineligible for curative-intent therapy including high-dose chemotherapy with autologous stem-cell transplantation (HDT-ASCT). Here, we report outcomes of a preplanned subgroup analysis of patients >= 65 years in ZUMA-7. Patients and Methods: Patients with LBCL refractory to or relapsed = 65 years were random-ized to axi-cel and SOC, respectively. Median EFS was greater with axi-cel versus SOC (21.5 vs. 2.5 months; median follow-up: 24.3 months; HR, 0.276; descriptive P = 3 adverse events occurred in 94% of axi-cel and 82% of SOC patients. No grade 5 cytokine release syndrome or neurologic events occurred. In the quality-of-life analysis, the mean change in PRO scores from baseline at days 100 and 150 favored axi-cel for EORTC QLQ-C30 Global Health, Physical Functioning, and EQ-5D-5L visual analog scale (descriptive P = 65 and = 65 years with R/R LBCL

    Invasion of Wolbachia into Anopheles and Other Insect Germlines in an Ex vivo Organ Culture System

    Get PDF
    The common bacterial endosymbiont Wolbachia manipulates its host's reproduction to promote its own maternal transmission, and can interfere with pathogen development in many insects making it an attractive agent for the control of arthropod-borne disease. However, many important species, including Anopheles mosquitoes, are uninfected. Wolbachia can be artificially transferred between insects in the laboratory but this can be a laborious and sometimes fruitless process. We used a simple ex vivo culturing technique to assess the suitability of Wolbachia-host germline associations. Wolbachia infects the dissected germline tissue of multiple insect species when the host tissue and bacteria are cultured together. Ovary and testis infection occurs in a density-dependent manner. Wolbachia strains are more capable of invading the germline of their native or closely related rather than divergent hosts. The ability of Wolbachia to associate with the germline of novel hosts is crucial for the development of stably-transinfected insect lines. Rapid assessment of the suitability of a strain-host combination prior to transinfection may dictate use of a particular Wolbachia strain. Furthermore, the cultured germline tissues of two major Anopheline vectors of Plasmodium parasites are susceptible to Wolbachia infection. This finding further enhances the prospect of using Wolbachia for the biological control of malaria

    Studying Black Holes on Horizon Scales with VLBI Ground Arrays

    Get PDF
    High-resolution imaging of supermassive black holes is now possible, with new applications to testing general relativity and horizon-scale accretion and relativistic jet formation processes. Over the coming decade, the EHT will propose to add new strategically placed VLBI elements operating at 1.3mm and 0.87mm wavelength. In parallel, development of next-generation backend instrumentation, coupled with high throughput correlation architectures, will boost sensitivity, allowing the new stations to be of modest collecting area while still improving imaging fidelity and angular resolution. The goal of these efforts is to move from imaging static horizon scale structure to dynamic reconstructions that capture the processes of accretion and jet launching in near real time

    Guidelines for Genome-Scale Analysis of Biological Rhythms

    Get PDF
    Genome biology approaches have made enormous contributions to our understanding of biological rhythms, particularly in identifying outputs of the clock, including RNAs, proteins, and metabolites, whose abundance oscillates throughout the day. These methods hold significant promise for future discovery, particularly when combined with computational modeling. However, genome-scale experiments are costly and laborious, yielding “big data” that are conceptually and statistically difficult to analyze. There is no obvious consensus regarding design or analysis. Here we discuss the relevant technical considerations to generate reproducible, statistically sound, and broadly useful genome-scale data. Rather than suggest a set of rigid rules, we aim to codify principles by which investigators, reviewers, and readers of the primary literature can evaluate the suitability of different experimental designs for measuring different aspects of biological rhythms. We introduce CircaInSilico, a web-based application for generating synthetic genome biology data to benchmark statistical methods for studying biological rhythms. Finally, we discuss several unmet analytical needs, including applications to clinical medicine, and suggest productive avenues to address them
    corecore