8,323 research outputs found

    Ecological indicators for abandoned mines, Phase 1: Review of the literature

    Get PDF
    Mine waters have been identified as a significant issue in the majority of Environment Agency draft River Basin Management Plans. They are one of the largest drivers for chemical pollution in the draft Impact Assessment for the Water Framework Directive (WFD), with significant failures of environmental quality standards (EQS) for metals (particularly Cd, Pb, Zn, Cu, Fe) in many rivers linked to abandoned mines. Existing EQS may be overprotective of aquatic life which may have adapted over centuries of exposure. This study forms part of a larger project to investigate the ecological impact of metals in rivers, to develop water quality targets (alternative objectives for the WFD) for aquatic ecosystems impacted by long-term mining pollution. The report reviews literature on EQS failures, metal effects on aquatic biota and effects of water chemistry, and uses this information to consider further work. A preliminary assessment of water quality and biology data for 87 sites across Gwynedd and Ceredigion (Wales) shows that existing Environment Agency water quality and biology data could be used to establish statistical relations between chemical variables and metrics of ecological quality. Visual representation and preliminary statistical analyses show that invertebrate diversity declines with increasing zinc concentration. However, the situation is more complex because the effects of other metals are not readily apparent. Furthermore, pH and aluminium also affect streamwater invertebrates, making it difficult to tease out toxicity due to individual mine-derived metals. The most characteristic feature of the plant communities of metal-impacted systems is a reduction in diversity, compared to that found in comparable unimpacted streams. Some species thrive in the presence of heavy metals, presumably because they are able to develop metal tolerance, whilst others consistently disappear. Effects are, however, confounded by water chemistry, particularly pH. Tolerant species are spread across a number of divisions of photosynthetic organisms, though green algae, diatoms and blue-green algae are usually most abundant, often thriving in the absence of competition and/or grazing. Current UK monitoring techniques focus on community composition and, whilst these provide a sampling and analytical framework for studies of metal impacts, the metrics are not sensitive to these impacts. There is scope for developing new metrics, based on community-level analyses and for looking at morphological variations common in some taxa at elevated metal concentrations. On the whole, community-based metrics are recommended, as these are easier to relate to ecological status definitions. With respect to invertebrates and fish, metals affect individuals, population and communities but sensitivity varies among species, life stages, sexes, trophic groups and with body condition. Acclimation or adaptation may cause varying sensitivity even within species. Ecosystem-scale effects, for example on ecological function, are poorly understood. Effects vary between metals such as cadmium, copper, lead, chromium, zinc and nickel in order of decreasing toxicity. Aluminium is important in acidified headwaters. Biological effects depend on speciation, toxicity, availability, mixtures, complexation and exposure conditions, for example discharge (flow). Current water quality monitoring is unlikely to detect short-term episodic increases in metal concentrations or evaluate the bioavailability of elevated metal concentrations in sediments. These factors create uncertainty in detecting ecological impairment in metal-impacted ecosystems. Moreover, most widely used biological indicators for UK freshwaters were developed for other pressures and none distinguishes metal impacts from other causes of impairment. Key ecological needs for better regulation and management of metals in rivers include: i) models relating metal data to ecological data that better represent influences on metal toxicity; ii) biodiagnostic indices to reflect metal effects; iii) better methods to identify metal acclimation or adaptation among sensitive taxa; iv) better investigative procedures to isolate metal effects from other pressures. Laboratory data on the effects of water chemistry on cationic metal toxicity and bioaccumulation show that a number of chemical parameters, particularly pH, dissolved organic carbon (DOC) and major cations (Na, Mg, K, Ca) exert a major influence on the toxicity and/or bioaccumulation of cationic metals. The biotic ligand model (BLM) provides a conceptual framework for understanding these water chemistry effects as a combination of the influence of chemical speciation, and metal uptake by organisms in competition with H+ and other cations. In some cases where the BLM cannot describe effects, empirical bioavailable models have been successfully used. Laboratory data on the effects of metal mixtures across different water chemistries are sparse, with implications for transferring understanding to mining-impacted sites in the field where mixture effects are likely. The available field data, although relatively sparse, indicate that water chemistry influences metal effects on aquatic ecosystems. This occurs through complexation reactions, notably involving dissolved organic matter and metals such as Al, Cu and Pb. Secondly, because bioaccumulation and toxicity are partly governed by complexation reactions, competition effects among metals, and between metals and H+, give rise to dependences upon water chemistry. There is evidence that combinations of metals are active in the field; the main study conducted so far demonstrated the combined effects of Al and Zn, and suggested, less certainly, that Cu and H+ can also contribute. Chemical speciation is essential to interpret and predict observed effects in the field. Speciation results need to be combined with a model that relates free ion concentrations to toxic effect. Understanding the toxic effects of heavy metals derived from abandoned mines requires the simultaneous consideration of the acidity-related components Al and H+. There are a number of reasons why organisms in waters affected by abandoned mines may experience different levels of metal toxicity than in the laboratory. This could lead to discrepancies between actual field behaviour and that predicted by EQS derived from laboratory experiments, as would be applied within the WFD. The main factors to consider are adaptation/acclimation, water chemistry, and the effects of combinations of metals. Secondary effects are metals in food, metals supplied by sediments, and variability in stream flows. Two of the most prominent factors, namely adaptation/ acclimation and bioavailability, could justify changes in EQS or the adoption of an alternative measure of toxic effects in the field. Given that abandoned mines are widespread in England and Wales, and the high cost of their remediation to meet proposed WFD EQS criteria, further research into the question is clearly justified. Although ecological communities of mine-affected streamwaters might be over-protected by proposed WFD EQS, there are some conditions under which metals emanating from abandoned mines definitely exert toxic effects on biota. The main issue is therefore the reliable identification of chemical conditions that are unacceptable and comparison of those conditions with those predicted by WFD EQS. If significant differences can convincingly be demonstrated, the argument could be made for alternative standards for waters affected by abandoned mines. Therefore in our view, the immediate research priority is to improve the quantification of metal effects under field circumstances. Demonstration of dose-response relationships, based on metal mixtures and their chemical speciation, and the use of better biological tools to detect and diagnose community-level impairment, would provide the necessary scientific information

    On ‘becoming social’ : the importance of collaborative free play in childhood

    Get PDF
    There is increasing concern about declining mental health amongst children in the UK and the USA. Evolutionary and anthropological theorists have begun to build a theory linking this situation to decreasing opportunities to engage in free play. This paper will explore typical contexts for children in these nations, concluding that a range of recently emerging environments have decreased opportunities for collaborative peer free play and ‘discovery’ activities for the current generation. We will draw the theoretical analysis from a broad area of research encompassing psychology, anthropology, education, sociology, marketing, and philosophy to offer a new blend of practical and theoretical perspectives that may shed further light upon this topic

    The Stripe 82 1-2 GHz Very Large Array Snapshot Survey: Multiwavelength Counterparts

    Full text link
    We have combined spectrosopic and photometric data from the Sloan Digital Sky Survey (SDSS) with 1.41.4 GHz radio observations, conducted as part of the Stripe 82 1−21-2 GHz Snapshot Survey using the Karl G. Jansky Very Large Array (VLA), which covers ∼100\sim100 sq degrees, to a flux limit of 88 μ\muJy rms. Cross-matching the 11 76811\,768 radio source components with optical data via visual inspection results in a final sample of 4 7954\,795 cross-matched objects, of which 1 9961\,996 have spectroscopic redshifts and 2 7992\,799 objects have photometric redshifts. Three previously undiscovered Giant Radio Galaxies (GRGs) were found during the cross-matching process, which would have been missed using automated techniques. For the objects with spectroscopy we separate radio-loud Active Galactic Nuclei (AGN) and star-forming galaxies (SFGs) using three diagnostics and then further divide our radio-loud AGN into the HERG and LERG populations. A control matched sample of HERGs and LERGs, matched on stellar mass, redshift and radio luminosity, reveals that the host galaxies of LERGs are redder and more concentrated than HERGs. By combining with near-infrared data, we demonstrate that LERGs also follow a tight K−zK-z relationship. These results imply the LERG population are hosted by population of massive, passively evolving early-type galaxies. We go on to show that HERGs, LERGs, QSOs and star-forming galaxies in our sample all reside in different regions of a WISE colour-colour diagram. This cross-matched sample bridges the gap between previous `wide but shallow' and `deep but narrow' samples and will be useful for a number of future investigations.Comment: 17 pages, 19 figures. Resubmitted to MNRAS after the initial comment

    EVA Health and Human Performance Benchmarking Study

    Get PDF
    Multiple HRP Risks and Gaps require detailed characterization of human health and performance during exploration extravehicular activity (EVA) tasks; however, a rigorous and comprehensive methodology for characterizing and comparing the health and human performance implications of current and future EVA spacesuit designs does not exist. This study will identify and implement functional tasks and metrics, both objective and subjective, that are relevant to health and human performance, such as metabolic expenditure, suit fit, discomfort, suited postural stability, cognitive performance, and potentially biochemical responses for humans working inside different EVA suits doing functional tasks under the appropriate simulated reduced gravity environments. This study will provide health and human performance benchmark data for humans working in current EVA suits (EMU, Mark III, and Z2) as well as shirtsleeves using a standard set of tasks and metrics with quantified reliability. Results and methodologies developed during this test will provide benchmark data against which future EVA suits, and different suit configurations (eg, varied pressure, mass, CG) may be reliably compared in subsequent tests. Results will also inform fitness for duty standards as well as design requirements and operations concepts for future EVA suits and other exploration systems

    The effects of training interventions on inter-limbs asymmetries: a systematic review with meta-analysis

    Get PDF
    Inter-limb asymmetries have been recently investigated in athletic populations. However, the effects of training interventions on inter-limb asymmetries have been scarcely examined. Therefore, the aim of this study was to determine the effects of training interventions on changes in inter-limb asymmetries from pre- to post-training. Furthermore, to examine the effects of training programs on intervention groups compared to control groups. A database search was completed (MEDLINE, CINAHL, and SPORTDiscus). Eight studies were then included in the meta-analysis. Results showed small reductions in inter-limb asymmetries in single leg broad jump (SLBJ) and change of direction (COD) speed from pre- to post-training interventions, whereas moderate effects were found in single leg countermovement jump (SLCMJ) and single leg (SL) lateral jump. When comparing the training interventions to the control groups, results showed small effects in favour of the training groups for reducing inter-limb asymmetries in SLBJ and large effects in SLCMJ, and COD speed. Thus, training interventions can evoke small to moderate reductions in inter-limb asymmetries from pre- to post-training programs. Strength training performed unilaterally or bilaterally may elicit these reductions. Furthermore, training interventions showed larger effects compared to the control groups in reducing inter-limb asymmetries. However, further research is needed

    Comparison of Hi and optical redshifts of galaxies - The impact of redshift uncertainties on spectral line stacking

    Get PDF
    Accurate optical redshifts will be critical for spectral co-adding techniques used to extract detections from below the noise level in ongoing and upcoming surveys for Hi, which will extend our current understanding of gas reservoirs in galaxies to lower column densities and higher redshifts. We have used existing, high quality optical and radio data from the SDSS and ALFALFA surveys to investigate the relationship be- tween redshifts derived from optical spectroscopy and neutral hydrogen (Hi) spectral line observations.We find that the two redshift measurements agree well, with a negli- gible systematic offset and a small distribution width. Employing simple simulations, we determine how the width of an ideal stacked Hi profile depends on these redshift offsets, as well as larger redshift errors more appropriate for high redshift galaxy sur- veys. The width of the stacked profile is dominated by the width distribution of the input individual profiles when the redshift errors are less than the median width of the input profiles, and only when the redshift errors become large, 150 kms−1, do they significantly affect the width of the stacked profile. This redshift accuracy can be achieved with moderate resolution optical spectra. We provide guidelines for the number of spectra required for stacking to reach a specified mass sensitivity, given tele- scope and survey parameters, which will be useful for planning optical spectroscopy observing campaigns to supplement the radio data.Web of Scienc

    A bespoke sleep monitoring and sleep hygiene intervention improves sleep in an U18 professional football player: A case study

    Get PDF
    This case study reports on a professional football player (age: 17.6 years) who was referred for sleep monitoring and intervention after reporting excessive night-time awakenings. The player undertook a series of subjective sleep assessments and objective sleep monitoring (activity monitor). Based on the data presented, a sleep hygiene intervention was prescribed. Numerical comparisons were made between pre-intervention (Pre) and post-intervention (Post) values. Objective values were also compared to reference data from a similarly aged professional cohort from the same club (n=11). Wake episodes per night (Pre: 7.9 ± 3, Post: 4.5 ± 1.9; -43%) and wake after sleep onset (WASO; Pre: 74.3 ± 31.8 mins, Post: 50.0 ± 22.8 mins, -33%) were improved from Pre to Post. Compared to the reference data, mean wake episodes per night (Pre: 7.9 ± 3.0, reference: 4.6 ± 2.6; -42%) and WASO (Pre: 74.3 ± 31.8 mins, reference: 44.3 ± 36.5 mins; -40%) were all lower compared to Pre levels. All effect sizes between Post and the reference data were small to trivial. Whilst causality cannot be proven, we observed multiple sleep metrics improving following an intervention. This provides a potential framework for practitioners looking to provide targeted sleep assessment and intervention

    A kinematical approach to gravitational lensing using new formulae for refractive index and acceleration

    Full text link
    This paper uses the Schwarzschild metric to derive an effective refractive index and acceleration vector that account for relativistic deflection of light rays, in an otherwise classical kinematic framework. The new refractive index and the known path equation are integrated to give accurate results for travel time and deflection angle, respectively. A new formula for coordinate acceleration is derived which describes the path of a massless test particle in the vicinity of a spherically symmetric mass density distribution. A standard ray-shooting technique is used to compare the deflection angle and time delay predicted by this new formula with the previously calculated values, and with standard first order approximations. Finally, the ray shooting method is used in theoretical examples of strong and weak lensing, reproducing known observer-plane caustic patterns for multiple masses.Comment: 11 pages, 7 figures, MNRAS accepte

    Evidence of a link between the evolution of clusters and their AGN fraction

    Get PDF
    ‘The definitive version is available at www3.interscience.wiley.com .' Copyright Blackwell Publishing / Royal Astronomical Society. DOI: 10.1111/j.1365-2966.2009.14513.xPeer reviewe

    Weak gravitational lensing with the Square Kilometre Array

    Get PDF
    We investigate the capabilities of various stages of the SKA to perform world-leading weak gravitational lensing surveys. We outline a way forward to develop the tools needed for pursuing weak lensing in the radio band. We identify the key analysis challenges and the key pathfinder experiments that will allow us to address them in the run up to the SKA. We identify and summarize the unique and potentially very powerful aspects of radio weak lensing surveys, facilitated by the SKA, that can solve major challenges in the field of weak lensing. These include the use of polarization and rotational velocity information to control intrinsic alignments, and the new area of weak lensing using intensity mapping experiments. We show how the SKA lensing surveys will both complement and enhance corresponding efforts in the optical wavebands through cross-correlation techniques and by way of extending the reach of weak lensing to high redshift.Comment: 19 pages, 6 figures. Cosmology Chapter, Advancing Astrophysics with the SKA (AASKA14) Conference, Giardini Naxos (Italy), June 9th-13th 201
    • …
    corecore