79 research outputs found

    A Late-Roman solidus found at Prełuki (the upper San River basin)

    Get PDF
    The aim of the article is to publish and discuss the late Roman solidus of Theodosius II (408-450), found in 2018 in the vicinity of the village of Prełuki, Komańcza commune, Sanok County. The coin was found randomly by treasure hunters, eventually recovered and donated to the Historical Museum of Sanok by Robert Fedyk. It is the second find of a late Roman solidus in the Upper San River basin. Several years ago a solidus of Valentinian III (425-455) had been found in Prusiek, Sanok County. Both coins belong to the early Migration Period finds horizon in this area. This consists of few bronze buckles, a sword, and fragments of a Hunnic cauldron finds. In all likelihood, the solidi found their way into the Upper San River basin as a consequence of the Hunnic-Germanic relations. They should be also treated as a part of the latest wave of Roman coins arriving in the present Lesser Poland area in the 5th century AD

    Complex Function Differentiability

    Get PDF
    For a complex valued function defined on its domain in complex numbers the differentiability in a single point and on a subset of the domain is presented. The main elements of differential calculus are developed. The algebraic properties of differential complex functions are shown.Pacharapokin Chanapat - Shinshu University, Nagano, JapanYamazaki Hiroshi - Shinshu University, Nagano, JapanShidama Yasunari - Shinshu University, Nagano, JapanNakamura Yatsuka - Shinshu University, Nagano, JapanAgnieszka Banachowicz and Anna Winnicka. Complex sequences. Formalized Mathematics, 4(1):121-124, 1993.Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.Takashi Mitsuishi, Katsumi Wasaki, and Yasunari Shidama. Property of complex sequence and continuity of complex function. Formalized Mathematics, 9(1):185-190, 2001.Adam Naumowicz. Conjugate sequences, bounded complex sequences and convergent complex sequences. Formalized Mathematics, 6(2):265-268, 1997.Yasunari Shidama and Artur Korniłowicz. Convergence and the limit of complex sequences. Series. Formalized Mathematics, 6(3):403-410, 1997.Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990

    Integrability Formulas. Part II

    Get PDF
    In this article, we give several differentiation and integrability formulas of special and composite functions including trigonometric function, and polynomial function.Li Bo - Qingdao University of Science and Technology, ChinaMa Na - Qingdao University of Science and Technology, ChinaLiang Xiquan - Qingdao University of Science and Technology, ChinaCzesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. Formalized Mathematics, 8(1):93-102, 1999.Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from R to R and integrability for continuous functions. Formalized Mathematics, 9(2):281-284, 2001.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.Jarosław Kotowicz. The limit of a real function at infinity. Formalized Mathematics, 2(1):17-28, 1991.Xiquan Liang and Bing Xie. Inverse trigonometric functions arctan and arccot. Formalized Mathematics, 16(2):147-158, 2008, doi:10.2478/v10037-008-0021-3.Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125-130, 1991.Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.Yasunari Shidama. The Taylor expansions. Formalized Mathematics, 12(2):195-200, 2004.Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998

    Integrability Formulas. Part III

    Get PDF
    In this article, we give several differentiation and integrability formulas of composite trigonometric function.Li Bo - Qingdao University of Science and Technology, ChinaMa Na - Qingdao University of Science and Technology, ChinaCzesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. Formalized Mathematics, 8(1):93-102, 1999.Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from R to R and integrability for continuous functions. Formalized Mathematics, 9(2):281-284, 2001.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.Yasunari Shidama. The Taylor expansions. Formalized Mathematics, 12(2):195-200, 2004.Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Peng Wang and Bo Li. Several differentiation formulas of special functions. Part V. Formalized Mathematics, 15(3):73-79, 2007, doi:10.2478/v10037-007-0009-4.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998

    Vector Functions and their Differentiation Formulas in 3-dimensional Euclidean Spaces

    Get PDF
    In this article, we first extend several basic theorems of the operation of vector in 3-dimensional Euclidean spaces. Then three unit vectors: e1, e2, e3 and the definition of vector function in the same spaces are introduced. By dint of unit vector the main operation properties as well as the differentiation formulas of vector function are shown [12].Liang Xiquan - Qingdao University of Science and Technology, ChinaZhao Piqing - Qingdao University of Science and Technology, ChinaBai Ou - University of Science and Technology of China, Hefei, ChinaGrzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.Murray R. Spiegel. Vector Analysis and an Introduction to Tensor Analysis. McGraw-Hill Book Company, New York, 1959.Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990

    Several Integrability Formulas of Some Functions, Orthogonal Polynomials and Norm Functions

    Get PDF
    In this article, we give several integrability formulas of some functions including the trigonometric function and the index function [3]. We also give the definitions of the orthogonal polynomial and norm function, and some of their important properties [19].Bo Li - Qingdao University of Science and Technology, ChinaYanping Zhuang - Qingdao University of Science and Technology, ChinaBing Xie - Qingdao University of Science and Technology, ChinaPan Wang - Qingdao University of Science and Technology, Chin

    Borel-Cantelli Lemma

    Get PDF
    This article is about the Borel-Cantelli Lemma in probability theory. Necessary definitions and theorems are given in [10] and [7].Ludwig Maximilians University of Munich, GermanyGrzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Fuguo Ge and Xiquan Liang. On the partial product of series and related basic inequalities. Formalized Mathematics, 13(3):413-416, 2005.Hans-Otto Georgii. Stochastik, Einführung in die Wahrscheinlichkeitstheorie und Statistik. deGruyter, Berlin, 2 edition, 2004.Adam Grabowski. On the Kuratowski limit operators. Formalized Mathematics, 11(4):399-409, 2003.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Achim Klenke. Wahrscheinlichkeitstheorie. Springer-Verlag, Berlin, Heidelberg, 2006.Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.Jarosław Kotowicz. The limit of a real function at infinity. Formalized Mathematics, 2(1):17-28, 1991.Andrzej Nędzusiak. Probability. Formalized Mathematics, 1(4):745-749, 1990.Andrzej Nędzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.Konrad Raczkowski and Andrzej Nędzusiak. Series. Formalized Mathematics, 2(4):449-452, 1991.Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.Bo Zhang, Hiroshi Yamazaki, and Yatsuka Nakamura. Limit of sequence of subsets. Formalized Mathematics, 13(2):347-352, 2005.Bo Zhang, Hiroshi Yamazaki, and Yatsuka Nakamura. Set sequences and monotone class. Formalized Mathematics, 13(4):435-441, 2005

    Riemann Integral of Functions from R into Rⁿ

    Get PDF
    In this article, we define the Riemann Integral of functions from R into Rⁿ, and prove the linearity of this operator. The presented method is based on [21].Miyajima Keiichi - Ibaraki University, Hitachi, JapanShidama Yasunari - Shinshu University, Nagano, JapanGrzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. Formalized Mathematics, 8(1):93-102, 1999.Noboru Endou and Yasunari Shidama. Completeness of the real Euclidean space. Formalized Mathematics, 13(4):577-580, 2005.Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. Partial differentiation on normed linear spaces Rn. Formalized Mathematics, 15(2):65-72, 2007, doi:10.2478/v10037-007-0008-5.Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from R to R and integrability for continuous functions. Formalized Mathematics, 9(2):281-284, 2001.Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Scalar multiple of Riemann definite integral. Formalized Mathematics, 9(1):191-196, 2001.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.Murray R. Spiegel. Theory and Problems of Vector Analysis. McGraw-Hill, 1974.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990

    Second-Order Partial Differentiation of Real Ternary Functions

    Get PDF
    In this article, we shall extend the result of [17] to discuss second-order partial differentiation of real ternary functions (refer to [7] and [14] for partial differentiation).Inaba 2205, Wing-Minamikan Nagano, Nagano, JapanGrzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. Partial differentiation on normed linear spaces Rn. Formalized Mathematics, 15(2):65-72, 2007, doi:10.2478/v10037-007-0008-5.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.Walter Rudin. Principles of Mathematical Analysis. MacGraw-Hill, 1976.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.Bing Xie, Xiquan Liang, and Hongwei Li. Partial differentiation of real binary functions. Formalized Mathematics, 16(4):333-338, 2008, doi:10.2478/v10037-008-0041-z.Bing Xie, Xiquan Liang, and Xiuzhuan Shen. Second-order partial differentiation of real binary functions. Formalized Mathematics, 17(2):79-87, 2009, doi: 10.2478/v10037-009-0009-7

    Leczenie żywieniowe w neurologii — stanowisko interdyscyplinarnej grupy ekspertów Część III. Rola żywienia w chorobie Alzheimera

    Get PDF
    Choroba Alzheimera może prowadzić do niedożywienia i kacheksji, których przyczyny są złożone. Autorzy przedstawiają interdyscyplinarne rekomendacje dotyczące szybkiego wykrywania, diagnozowania oraz postępowania w stanach niedożywienia w zespołach otępiennych, ze szczególnym uwzględnieniem choroby Alzheimera. Istnieją przesłanki wskazujące na to, że prawidłowy stan odżywienia, dieta zbliżona do śródziemnomorskiej oraz specyficzna interwencja żywieniowa zawierająca zestawy określonych substancji mogą się przyczyniać do spowolnienia tempa postępu zaburzeń poznawczych, chociaż wymaga to dalszych badań.
    corecore