Borel-Cantelli Lemma ${ }^{1}$

Peter Jaeger
Ludwig Maximilians University of Munich
Germany

Abstract

Summary. This article is about the Borel-Cantelli Lemma in probability theory. Necessary definitions and theorems are given in [10] and [7].

MML identifier: BOR_CANT, version: $\underline{7.11 .07} 4.160 .1126$

The notation and terminology used here have been introduced in the following papers: [17], [3], [4], [8], [13], [1], [2], [5], [15], [14], [21], [9], [12], [11], [16], [6], [20], [19], and [18].

For simplicity, we adopt the following rules: O_{1} is a non empty set, S_{1} is a σ-field of subsets of O_{1}, P_{1} is a probability on S_{1}, A is a sequence of subsets of S_{1}, and n is an element of \mathbb{N}.

Let D be a set, let x, y be extended real numbers, and let a, b be elements of D. Then $(x>y \rightarrow a, b)$ is an element of D.

We now state two propositions:
(1) For every element k of \mathbb{N} and for every element x of \mathbb{R} such that k is odd and $x>0$ and $x \leq 1$ holds $\left(-x \operatorname{ExpSeq}_{\mathbb{R}}\right)(k+1)+\left(-x \operatorname{ExpSeq}_{\mathbb{R}}\right)(k+2) \geq 0$.
(2) For every element x of \mathbb{R} holds $1+x \leq$ (the function $\exp)(x)$.

Let s be a sequence of real numbers. The functor ExpFuncWithElementOf s yielding a sequence of real numbers is defined as follows:
(Def. 1) For every natural number d holds (ExpFuncWithElementOf $s)(d)=$ $\sum-s(d) \operatorname{ExpSeq}_{\mathbb{R}}$.
Next we state two propositions:
(3) (The partial product of ExpFuncWithElementOf $\left.\left(P_{1} \cdot A\right)\right)(n)=$ (the function $\exp)\left(-\left(\sum_{\alpha=0}^{\kappa}\left(P_{1} \cdot A\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)\right)$.

[^0](4) (The partial product of $\left.P_{1} \cdot A^{\mathbf{c}}\right)(n) \leq$ (the partial product of ExpFuncWithElementOf $\left.\left(P_{1} \cdot A\right)\right)(n)$.
Let n_{1}, n_{2} be elements of \mathbb{N}. The functor $\operatorname{SeqOfIFGT1}\left(n_{1}, n_{2}\right)$ yielding a sequence of \mathbb{N} is defined by:
(Def. 2) For every element n of \mathbb{N} holds (SeqOfIFGT1 $\left.\left(n_{1}, n_{2}\right)\right)(n)=\left(n>n_{1} \rightarrow\right.$ $\left.n+n_{2}, n\right)$.
Let k be an element of \mathbb{N}. The SeqOfIFGT2 k yields a sequence of \mathbb{N} and is defined by:
(Def. 3) For every element n of \mathbb{N} holds (the SeqOfIFGT2 $k)(n)=n+k$.
Let k be an element of \mathbb{N}. The SeqOfIFGT3 k yields a sequence of \mathbb{N} and is defined as follows:
(Def. 4) For every element n of \mathbb{N} holds (the SeqOfIFGT3 $k)(n)=(n>k \rightarrow 0,1)$.
Let n_{1}, n_{2} be elements of \mathbb{N}. The functor SeqOfIFGT4 $\left(n_{1}, n_{2}\right)$ yielding a sequence of \mathbb{N} is defined as follows:
(Def. 5) For every element n of \mathbb{N} holds (SeqOfIFGT4 $\left.\left(n_{1}, n_{2}\right)\right)(n)=\left(n>n_{1}+\right.$ $\left.1 \rightarrow n+n_{2}, n\right)$.
Let n_{1}, n_{2} be elements of \mathbb{N}. One can verify that $\operatorname{Seq} \operatorname{OfIFGT1}\left(n_{1}, n_{2}\right)$ is one-to-one and SeqOfIFGT4 $\left(n_{1}, n_{2}\right)$ is one-to-one.

Let n be an element of \mathbb{N}. Observe that the SeqOfIFGT2 n is one-to-one.
Let X be a set, let s be an element of \mathbb{N}, and let A be a sequence of subsets of X. The functor $\operatorname{ShiftSeq}(A, s)$ yielding a sequence of subsets of X is defined by:
(Def. 6) $\operatorname{ShiftSeq}(A, s)=A \uparrow s$.
Let O_{1} be a non empty set, let S_{1} be a σ-field of subsets of O_{1}, let s be an element of \mathbb{N}, and let A be a sequence of subsets of S_{1}. The functor $@ \operatorname{ShiftSeq}(A, s)$ yields a sequence of subsets of S_{1} and is defined by:
(Def. 7) @ShiftSeq $(A, s)=\operatorname{ShiftSeq}(A, s)$.
Next we state the proposition
(5)(i) For all sequences A, B of subsets of S_{1} such that $n>n_{1}$ and $B=$ $A \cdot \operatorname{Seq} \operatorname{OfIFGT}\left(n_{1}, n_{2}\right)$ holds (the partial product of $\left.P_{1} \cdot B\right)(n)=($ the partial product of $\left.P_{1} \cdot A\right)\left(n_{1}\right) \cdot\left(\right.$ the partial product of $P_{1} \cdot @ \operatorname{ShiftSeq}\left(A, n_{1}+\right.$ $\left.\left.n_{2}+1\right)\right)\left(n-n_{1}-1\right)$, and
(ii) for all sequences A, B, C of subsets of S_{1} and for every sequence e of \mathbb{N} such that $n>n_{1}$ and $C=A \cdot e$ and $B=C \cdot \operatorname{SeqOfIFGT1}\left(n_{1}, n_{2}\right)$ holds (the partial Intersection of $B)(n)=($ the partial Intersection of $C)\left(n_{1}\right) \cap($ the partial Intersection of @ShiftSeq $\left.\left(C, n_{1}+n_{2}+1\right)\right)\left(n-n_{1}-1\right)$.
Let O_{1} be a non empty set, let S_{1} be a σ-field of subsets of O_{1}, let P_{1} be a probability on S_{1}, and let A be a sequence of subsets of S_{1}. We say that A is all independent w.r.t. P_{1} if and only if the condition (Def. 8) is satisfied.
(Def. 8) Let B be a sequence of subsets of S_{1}. Given a sequence e of \mathbb{N} such that e is one-to-one and for every element n of \mathbb{N} holds $A(e(n))=B(n)$. Let n be an element of \mathbb{N}. Then (the partial product of $\left.P_{1} \cdot B\right)(n)=P_{1}(($ the partial Intersection of $B)(n)$).
The following propositions are true:
(6) Suppose $n>n_{1}$ and A is all independent w.r.t. P_{1}. Then $P_{1}(($ the partial Intersection of $\left.A^{\mathbf{c}}\right)\left(n_{1}\right) \cap\left(\right.$ the partial Intersection of @ShiftSeq $\left(A, n_{1}+n_{2}+\right.$ $\left.1))\left(n-n_{1}-1\right)\right)=\left(\right.$ the partial product of $\left.P_{1} \cdot A^{\mathbf{c}}\right)\left(n_{1}\right) \cdot($ the partial product of $\left.P_{1} \cdot @ \operatorname{ShiftSeq}\left(A, n_{1}+n_{2}+1\right)\right)\left(n-n_{1}-1\right)$.
(7) $\quad\left(\right.$ The partial Intersection of $\left.A^{\mathrm{c}}\right)(n)=($ the partial Union of $A)(n)^{\mathrm{c}}$.
(8) $\quad P_{1}\left(\left(\right.\right.$ the partial Intersection of $\left.\left.A^{\mathbf{c}}\right)(n)\right)=1-P_{1}(($ the partial Union of A) (n)).

Let X be a set and let A be a sequence of subsets of X. The UnionShiftSeq A yielding a sequence of subsets of X is defined as follows:
(Def. 9) For every element n of \mathbb{N} holds (the UnionShiftSeq $A)(n)=$ $\cup \operatorname{ShiftSeq}(A, n)$.
Let O_{1} be a non empty set, let S_{1} be a σ-field of subsets of O_{1}, and let A be a sequence of subsets of S_{1}. The @UnionShiftSeq A yields a sequence of subsets of S_{1} and is defined as follows:
(Def. 10) The @UnionShiftSeq $A=$ the UnionShiftSeq A.
Let O_{1} be a non empty set, let S_{1} be a σ-field of subsets of O_{1}, and let A be a sequence of subsets of S_{1}. The @lim sup A yielding an event of S_{1} is defined as follows:
(Def. 11) The @lim sup $A=\bigcap$ (the @UnionShiftSeq A).
Let X be a set and let A be a sequence of subsets of X. The IntersectShiftSeq A yields a sequence of subsets of X and is defined as follows:
(Def. 12) For every element n of \mathbb{N} holds (the IntersectShiftSeq $A)(n)=$ Intersection $\operatorname{ShiftSeq}(A, n)$.
Let O_{1} be a non empty set, let S_{1} be a σ-field of subsets of O_{1}, and let A be a sequence of subsets of S_{1}. The @IntersectShiftSeq A yielding a sequence of subsets of S_{1} is defined as follows:
(Def. 13) The @IntersectShiftSeq $A=$ the IntersectShiftSeq A.
Let O_{1} be a non empty set, let S_{1} be a σ-field of subsets of O_{1}, and let A be a sequence of subsets of S_{1}. The @lim inf A yielding an event of S_{1} is defined by:
(Def. 14) The @lim inf $A=\bigcup($ the @IntersectShiftSeq $A)$.
The following propositions are true:
(9) $\quad\left(\right.$ The @IntersectShiftSeq $\left.A^{\mathbf{c}}\right)(n)=($ the @UnionShiftSeq $A)(n)^{\text {c }}$.
(10) Suppose A is all independent w.r.t. P_{1}. Then $P_{1}(($ the partial Intersection of $\left.\left.A^{\mathbf{c}}\right)(n)\right)=\left(\right.$ the partial product of $\left.P_{1} \cdot A^{\mathbf{c}}\right)(n)$.
(11) Let X be a set and A be a sequence of subsets of X. Then
(i) the superior setsequence $A=$ the UnionShiftSeq A, and
(ii) the inferior setsequence $A=$ the IntersectShiftSeq A.
(12)(i) The superior setsequence $A=$ the @UnionShiftSeq A, and
(ii) the inferior setsequence $A=$ the @IntersectShiftSeq A.

Let O_{1} be a non empty set, let S_{1} be a σ-field of subsets of O_{1}, let P_{1} be a probability on S_{1}, and let A be a sequence of subsets of S_{1}. The functor $\operatorname{SumShiftSeq}\left(P_{1}, A\right)$ yields a sequence of real numbers and is defined by:
(Def. 15) For every element n of \mathbb{N} holds ($\left.\operatorname{SumShiftSeq}\left(P_{1}, A\right)\right)(n)=\sum\left(P_{1}\right.$. $@ \operatorname{ShiftSeq}(A, n))$.
We now state several propositions:
(13) If $\left(\sum_{\alpha=0}^{\kappa}\left(P_{1} \cdot A\right)(\alpha)\right)_{\kappa \in \mathbb{N}}$ is convergent, then $P_{1}($ the $@ \lim \sup A)=0$ and $\lim \operatorname{SumShiftSeq}\left(P_{1}, A\right)=0$ and $\operatorname{SumShiftSeq}\left(P_{1}, A\right)$ is convergent.
(14)(i) For every set X and for every sequence A of subsets of X and for every element n of \mathbb{N} and for every set x holds there exists an element k of \mathbb{N} such that $x \in(\operatorname{ShiftSeq}(A, n))(k)$ iff there exists an element k of \mathbb{N} such that $k \geq n$ and $x \in A(k)$,
(ii) for every set X and for every sequence A of subsets of X and for every set x holds $x \in \operatorname{Intersection}$ (the UnionShiftSeq A) iff for every element m of \mathbb{N} there exists an element n of \mathbb{N} such that $n \geq m$ and $x \in A(n)$,
(iii) for every sequence A of subsets of S_{1} and for every set x holds $x \in \bigcap$ (the @UnionShiftSeq A) iff for every element m of \mathbb{N} there exists an element n of \mathbb{N} such that $n \geq m$ and $x \in A(n)$,
(iv) for every set X and for every sequence A of subsets of X and for every set x holds $x \in \bigcup$ (the IntersectShiftSeq A) iff there exists an element n of \mathbb{N} such that for every element k of \mathbb{N} such that $k \geq n$ holds $x \in A(k)$,
(v) for every sequence A of subsets of S_{1} and for every set x holds $x \in \bigcup$ (the @IntersectShiftSeq A) iff there exists an element n of \mathbb{N} such that for every element k of \mathbb{N} such that $k \geq n$ holds $x \in A(k)$, and
(vi) for every sequence A of subsets of S_{1} and for every element x of O_{1} holds $x \in \bigcup$ (the @IntersectShiftSeq $A^{\mathbf{c}}$) iff there exists an element n of \mathbb{N} such that for every element k of \mathbb{N} such that $k \geq n$ holds $x \notin A(k)$.
(15)(i) $\lim \sup A=$ the $@ \lim \sup A$,
(ii) $\liminf A=$ the $@ \lim \inf A$,
(iii) the @lim inf $A^{\mathbf{c}}=(\text { the } @ \lim \sup A)^{\mathrm{c}}$,
(iv) $\quad P_{1}\left(\right.$ the @ $\left.\lim \inf A^{\mathbf{c}}\right)+P_{1}($ the $@ \lim \sup A)=1$, and
(v) $\quad P_{1}\left(\liminf \left(A^{\mathbf{c}}\right)\right)+P_{1}(\lim \sup A)=1$.
(16)(i) If $\left(\sum_{\alpha=0}^{\kappa}\left(P_{1} \cdot A\right)(\alpha)\right)_{\kappa \in \mathbb{N}}$ is convergent, then $P_{1}(\lim \sup A)=0$ and $P_{1}\left(\liminf \left(A^{\mathrm{c}}\right)\right)=1$, and
(ii) if A is all independent w.r.t. P_{1} and $\left(\sum_{\alpha=0}^{\kappa}\left(P_{1} \cdot A\right)(\alpha)\right)_{\kappa \in \mathbb{N}}$ is divergent to $+\infty$, then $P_{1}\left(\liminf \left(A^{\mathbf{c}}\right)\right)=0$ and $P_{1}(\lim \sup A)=1$.
(17) If $\left(\sum_{\alpha=0}^{\kappa}\left(P_{1} \cdot A\right)(\alpha)\right)_{\kappa \in \mathbb{N}}$ is not convergent and A is all independent w.r.t. P_{1}, then $P_{1}\left(\liminf \left(A^{\mathbf{c}}\right)\right)=0$ and $P_{1}(\lim \sup A)=1$.
(18) If A is all independent w.r.t. P_{1}, then $P_{1}\left(\liminf \left(A^{\mathbf{c}}\right)\right)=0$ or $P_{1}\left(\liminf \left(A^{\mathbf{c}}\right)\right)=1$ but $P_{1}(\lim \sup A)=0$ or $P_{1}(\lim \sup A)=1$.
(19) $\quad\left(\sum_{\alpha=0}^{\kappa}\left(P_{1} \cdot @ \operatorname{ShiftSeq}\left(A, n_{1}+1\right)\right)(\alpha)\right)_{\kappa \in \mathbb{N}}(n) \leq\left(\sum_{\alpha=0}^{\kappa}\left(P_{1} \cdot A\right)(\alpha)\right)_{\kappa \in \mathbb{N}}\left(n_{1}+\right.$ $1+n)-\left(\sum_{\alpha=0}^{\kappa}\left(P_{1} \cdot A\right)(\alpha)\right)_{\kappa \in \mathbb{N}}\left(n_{1}\right)$.
(20) $\quad P_{1}\left(\left(\right.\right.$ the @IntersectShiftSeq $\left.\left.A^{\mathbf{c}}\right)(n)\right)=1-P_{1}(($ the $@ U n i o n S h i f t S e q$ A) (n)).
(21)(i) If $A^{\mathbf{c}}$ is all independent w.r.t. P_{1}, then $P_{1}(($ the partial Intersection of $A)(n))=\left(\right.$ the partial product of $\left.P_{1} \cdot A\right)(n)$, and
(ii) if A is all independent w.r.t. P_{1}, then $1-P_{1}(($ the partial Union of $A)(n))=\left(\right.$ the partial product of $\left.P_{1} \cdot A^{\mathbf{c}}\right)(n)$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[6] Fuguo Ge and Xiquan Liang. On the partial product of series and related basic inequalities. Formalized Mathematics, 13(3):413-416, 2005.
[7] Hans-Otto Georgii. Stochastik, Einführung in die Wahrscheinlichkeitstheorie und Statistik. deGruyter, Berlin, 2 edition, 2004.
[8] Adam Grabowski. On the Kuratowski limit operators. Formalized Mathematics, 11(4):399-409, 2003.
[9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[10] Achim Klenke. Wahrscheinlichkeitstheorie. Springer-Verlag, Berlin, Heidelberg, 2006.
[11] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[12] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[13] Jarosław Kotowicz. The limit of a real function at infinity. Formalized Mathematics, 2(1):17-28, 1991.
[14] Andrzej Nędzusiak. Probability. Formalized Mathematics, 1(4):745-749, 1990.
[15] Andrzej Nędzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
[16] Konrad Raczkowski and Andrzej Nędzusiak. Series. Formalized Mathematics, 2(4):449452, 1991.
[17] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.
[18] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[19] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.
[20] Bo Zhang, Hiroshi Yamazaki, and Yatsuka Nakamura. Limit of sequence of subsets. Formalized Mathematics, 13(2):347-352, 2005.
[21] Bo Zhang, Hiroshi Yamazaki, and Yatsuka Nakamura. Set sequences and monotone class. Formalized Mathematics, 13(4):435-441, 2005.

Received January 31, 2011

[^0]: ${ }^{1}$ The author wants to thank Prof. F. Merkl for his kind support during the course of this work.

