17 research outputs found

    Relationship between shear energy input and sedimentation properties of exopolysaccharide-producing StreptococcusStreptococcus thermophilusthermophilus strains

    Get PDF
    separation of the bacteria cells. This separation is most commonly carried out with disc stack separators and needs to be adjusted to the respective strain to obtain a high cell recovery rate. Exopolysaccharides (EPS) produced by several starter cultures, however, have a large negative impact on the separation properties of the cells. These EPS can be divided into cell-bound capsular EPS or free EPS that are released into the surrounding fermentation medium. To improve the separation step, shear forces were applied after fermentation with a gear ring disperser to simulate the impact of a homogenizer and the influence on the separation properties of six Streptococcus thermophilus strains was examined. In case of capsular EPS, the sedimentation velocity of the bacteria increased due to shearing off the capsular EPS layer. Shearing media with free EPS resulted in a viscosity decrease and, hence, in a higher sedimentation velocity, as was determined using a disc centrifuge and a LUMiSizer. Sediment compression as measured with the LUMiSizer was also affected by the shearing step. The results of this study suggest that a defined shear treatment of EPS producing bacterial starter cultures leads to improved separation properties and, hence, higher bacteria yields. We assume that both EPS types affect separation efficiency of the bacteria cells, free EPS because of increased media viscosity and capsular EPS because they act like a friction pad

    Blending side streams. A potential solution to reach a resource efficient, circular, zero-waste food system

    Get PDF
    Reduction of production losses and increasing resource efficiency is needed to improve sustainability of the food supply chain. One approach to reach more resource-efficient, circular food systems is blending and processing side streams, especially when blending increases their value through compositional, nutritional or functional synergies. In this perspective we present a case study for valorizing sunflower oil press cake and whey. As the need for specialty products grows, small and medium-sized seed oil producers will be challenged with by-products. Similarly, small and geographically scattered dairy companies are faced with inadequate supply chains not allowing handling and downstream processing of whey. By combining two side streams, and applying simple processing steps and novel fermentation approaches, it would be possible not only to improve circularity of the value chain, but also to develop innovative ingredient platforms. A series of solutions appealing to various end users, from beverage producers to bakeries and snack applications, can be developed from fermented side stream blends when specific demands to ensure food safety and appropriate sensory quality are met

    Degradation of Exopolysaccharides from Lactic Acid Bacteria by Thermal, Chemical, Enzymatic and Ultrasound Stresses

    No full text
    During isolation, exopolysaccharides (EPS) from lactic acid bacteria are subject of thermal, chemical, enzymatic or ultrasound stress of different intensity that may affect macromolecular properties, for instance molecular mass or (intrinsic) viscosity. These parameters are, however, crucial, as they are associated with the technofunctional potential of EPS replacing commercial thickeners in nonfermented products. The aim of this study was to systematically examine treatments EPS are usually exposed to during isolation and to investigate the underlying degradation mechanisms. Solutions (1.0 g/L) of EPS from Streptococcus thermophilus, isolated as gently as possible, and commercial dextran were analyzed for molecular mass distributions as representative measure of molecule alterations. Generally, acid, excessive heat and ultrasonication, intensified by simultaneous application, showed EPS degradation effects. Thus, recommendations are given for isolation protocols. Ultrasonic degradation at 114 W/cm² fitted into the random chain scission model and followed third- (S. thermophilus EPS) or second-order kinetics (dextran). The degradation rate constant reflects the sensitivity to external stresses and was DGCC7710 EPS > DGCC7919 EPS > dextran > ST143 EPS. Due to their exceptional structural heterogeneity, the differences could not be linked to individual features. The resulting molecular mass showed good correlation (r² = 0.99) with dynamic viscosity

    The Role of Exopolysaccharide-Producing Streptococcus thermophilus on Physical Properties of Stirred Skim Milk Gel

    No full text
    The techno-functionality of exopolysaccharides (EPS) from Streptococcus thermophilus in stirred fermented milk is affected by several extrinsic (e.g., base milk composition) and intrinsic (e.g., amount and properties of EPS) factors. The aim of this study was to use skim milk models to identify the key factors that influence the physical properties of stirred fermented milk with EPS. For that, fermentation was carried out with one of three single S. thermophilus strains (intrinsic factors) at two casein:whey protein ratios of the base milk, two acidification activities of the starters, and two fermentation temperatures (extrinsic factors). The effects of the factors on the acidification kinetics, EPS amount, susceptibility to syneresis, and texture properties were then discriminated by a multivariate ANOVA-simultaneous component analysis. Strains producing ropy EPS mainly determined the texture properties, whereas the extrinsic factors primarily affected the acidification kinetics and EPS amount. When capsular EPS were also present, the syneresis was lower; however, this effect was more pronounced after enrichment of base milk with whey protein. The EPS amount did not correlate with the texture or syneresis, pointing to the importance of other factors such as the EPS location (type) and EPS–protein interactions for their functionality in stirred fermented milk

    The Role of Exopolysaccharide-Producing <i>Streptococcus thermophilus</i> on Physical Properties of Stirred Skim Milk Gel

    No full text
    The techno-functionality of exopolysaccharides (EPS) from Streptococcus thermophilus in stirred fermented milk is affected by several extrinsic (e.g., base milk composition) and intrinsic (e.g., amount and properties of EPS) factors. The aim of this study was to use skim milk models to identify the key factors that influence the physical properties of stirred fermented milk with EPS. For that, fermentation was carried out with one of three single S. thermophilus strains (intrinsic factors) at two casein:whey protein ratios of the base milk, two acidification activities of the starters, and two fermentation temperatures (extrinsic factors). The effects of the factors on the acidification kinetics, EPS amount, susceptibility to syneresis, and texture properties were then discriminated by a multivariate ANOVA-simultaneous component analysis. Strains producing ropy EPS mainly determined the texture properties, whereas the extrinsic factors primarily affected the acidification kinetics and EPS amount. When capsular EPS were also present, the syneresis was lower; however, this effect was more pronounced after enrichment of base milk with whey protein. The EPS amount did not correlate with the texture or syneresis, pointing to the importance of other factors such as the EPS location (type) and EPS–protein interactions for their functionality in stirred fermented milk

    Clustering of <i>Streptococcus thermophilus</i> Strains to Establish a Relation between Exopolysaccharide Characteristics and Gel Properties of Acidified Milk

    No full text
    In situ produced extracellular polysaccharides (EPS) from lactic acid bacteria are generally known to affect the texture of fermented dairy products; however, the interplay between EPS and product properties is still poorly understood. The aim of this study was to establish a relationship between concentration and properties of EPS, and gel formation of milk analysed by noninvasive Multispeckle Diffusing Wave Spectroscopy. Twenty Streptococcus thermophilus strains were classified with respect to EPS concentration (8&#8722;126 mg GE/kg) and ropiness (thread length: 15&#8722;80 mm). Five groups identified by cluster analysis demonstrate the high strain-to-strain variability even within one species of lactic acid bacteria. Results from acidification and gelation experiments averaged per cluster indicate that fermentation time and gel stiffness is higher for strains that produce ropy EPS. A further increase in gel stiffness was detected for strains that also produced cell-bound EPS, which underlines the importance of both ropy and cell-bound EPS for improving acid gel properties. The results may be helpful for a proper selection of EPS-producing starter cultures

    Size Separation Techniques for the Characterisation of Cross-Linked Casein: A Review of Methods and Their Applications

    Get PDF
    Casein is the major protein fraction in milk, and its cross-linking has been a topic of scientific interest for many years. Enzymatic cross-linking has huge potential to modify relevant techno-functional properties of casein, whereas non-enzymatic cross-linking occurs naturally during the storage and processing of milk and dairy products. Two size separation techniques were applied for characterisation of these reactions: gel electrophoresis and size exclusion chromatography. This review summarises their separation principles and discusses the outcome of studies on cross-linked casein from the last ~20 years. Both methods, however, show limitations concerning separation range and are applied mainly under denaturing and reducing conditions. In contrast, field flow fractionation has a broad separation range and can be easily applied under native conditions. Although this method has become a powerful tool in polymer and nanoparticle analysis and was used in few studies on casein micelles, it has not yet been applied to investigate cross-linked casein. Finally, the principles and requirements for absolute molar mass determination are reviewed, which will be of increased interest in the future since suitable calibration substances for casein polymers are scarce
    corecore