12 research outputs found

    Ergebnisse einer retrospektiven Befragung von BĂŒrgerinnen und BĂŒrgern durch das Gesundheitsamt Bautzen zu Symptomen, Krankheitsdauer und Gesundheitsfolgen bei SARS-CoV-2-Infektion

    No full text
    Nach der ersten Welle der COVID-19-Pandemie im FrĂŒhjahr 2020 wurde im Landkreis Bautzen eine retrospektive Befragung zu KrankheitsverlĂ€ufen sowie den gesundheitlichen Folgen einer SARS-CoV-2-Infektion und/oder den Isolations- bzw. QuarantĂ€nemaßnahmen durchgefĂŒhrt. Die vorliegende Arbeit beschreibt die Resultate dieser Befragung und geht der Frage nach, wie gut die gesundheitliche Betreuung durch das Gesundheitsamt Bautzen zu diesem Zeitpunkt eingeschĂ€tzt wurde. Dabei wird deutlich, dass im Endemie-/Pandemiefall die ErmittlungstĂ€tigkeit im Öffentlichen Gesundheitsdienst einen wesentlichen Beitrag bei der Erhebung und Differenzierung von Krankheitssymptomen leisten kann.Peer Reviewe

    Dissolution of artificial otoconia by hydrochloric acid (pH 1) <i>(A,B,C)</i> and details of the dissolution effects (belly-area) <i>(D,E,F)</i>.

    No full text
    <p><i>(A)</i> Intact artificial otoconium before treatment with hydrochloric acid. <i>(B)</i> Dissolution after 15 min and 70 min <i>(C)</i> exposure to hydrochloric acid. The particle in <i>(C)</i> is surrounded by significant amount of organic residue (see red arrow). <i>(D)</i> Surface before exposure. Dissolution after 15 min <i>(E)</i> and 70 min <i>(F)</i> exposure to hydrochloric acid. ESEM, low vacuum (LV), 15 kV. Scale bars in <i>(B)</i> also for <i>(A)</i>: 400 ”m, <i>(C)</i>: 100 ”m, <i>(D)</i>: 20 ”m, <i>(E)</i>: 10 ”m and <i>(F)</i>: 5 ”m.</p

    Inner structure <i>(A)</i> and outer shape <i>(B)</i> of a single human otoconium.

    No full text
    <p><i>(A)</i> 3-D-model of the belly/branch-architecture <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0102516#pone.0102516-Walther2" target="_blank">[14]</a>, showing the belly (light-coloured) and the 3+3 branches (dark) meeting at the center of symmetry of the otoconium. The terminal planes representing the end faces of the branches at both sides of the otoconium are turned by 60° to each other. <i>(B)</i> ESEM-image of a single intact human otoconium. High vacuum (HV), 15 kV. Scale bar <i>(B)</i>: 5 ”m.</p

    Dissolution of artificial otoconia and details of structural changes (belly-area), by treatment with demineralized water.

    No full text
    <p><i>(A)</i> Single artificial otoconium before treatment. Dissolution after 110 hours <i>(B)</i> and 200 hours <i>(F)</i> exposure. The red arrows in <i>(B)</i> and <i>(C)</i> show the position of one of the branches. The blue arrow in <i>(C)</i> points to the belly-area. <i>(D)</i> Surface of the belly-area before exposure and after 110 hours <i>(E)</i> and 200 hours <i>(F)</i> treatment. ESEM, low vacuum (LV), 15 kV. Scale bars <i>(C)</i> also for <i>(A</i>–<i>B)</i>: 300 ”m, <i>(D)</i>: 10 ”m, <i>(F)</i> also for <i>(E)</i>: 20 ”m.</p

    Dissolution of artificial otoconia after treatment with EDTA (c = 0,107 mol/L) <i>(A,B,C)</i> and details of the dissolution effects (belly-area) <i>(D,E,F)</i>.

    No full text
    <p><i>(A)</i> Single otoconium before exposure to EDTA. Dissolution after 90 min <i>(B)</i> and 160 min <i>(F)</i> exposure. <i>(D)</i> Surface structure before EDTA treatment and after 30 min <i>(E)</i> and 140 min <i>(F)</i> exposure. The red arrows in <i>(B)</i> and <i>(C)</i> indicate one of the branches of the otoconium. ESEM, low vacuum (LV), 15 kV. Scale bars <i>(A)</i>: 400 ”m, <i>(B)</i>: 200 ”m, <i>(C)</i>: 100 ”m, <i>(D)</i>: 10 ”m, <i>(E)</i>: 50 ”m, <i>(F)</i>: 20 ”m.</p

    Intergrowth and Interfacial Structure of Biomimetic Fluorapatite–Gelatin Nanocomposite: A Solid-State NMR Study

    No full text
    The model system fluorapatite–gelatin allows mimicking the formation conditions on a lower level of complexity compared to natural dental and bone tissues. Here, we report on solid-state NMR investigations to examine the structure of fluorapatite–gelatin nanocomposites on a molecular level with particular focus on organic–inorganic interactions. Using <sup>31</sup>P, <sup>19</sup>F, and <sup>1</sup>H MAS NMR and heteronuclear correlations, we found the nanocomposite to consist of crystalline apatite-like regions (fluorapatite and hydroxyfluorapatite) in close contact with a more dissolved (amorphous) layer containing first motifs of the apatite crystal structure as well as the organic component. A scheme of the intergrowth region in the fluorapatite–gelatin nanocomposite, where mineral domains interact with organic matrix, is presented

    Structural Relationship between Calcite-Gelatine Composites and Biogenic (Human) Otoconia

    No full text
    Biogenic otoconia (ear dust) are composite materials of calcite with about 2 wt.-% proteins showing an average longitudinal size of about 10 mu m. The tiny biomineral particles are situated in the inner ear (in the maculae) and act as sensors for gravity and linear acceleration. Our comparative study of calcitegelatine composites (grown by double diffusion) and human otoconia is based on decalcification experiments, scanning electron microscopy, TEM and X-ray investigations in order to obtain a complete picture of the 3D structure and morphogenesis of the materials. Otoconia as calciteprotein composites display a cylindrical body with terminal rhombohedral faces intersecting at the pointed ends. As evidenced by TEM on focused ion beam cuts, both the artificial composites and human otoconia show a particular distribution of areas with different volume densities leading to a dumbbell-shape of the more dense parts consisting of rhombohedral branches (with end faces) and a less ordered, less dense area (the belly region). The peculiar inner architecture of otoconia with its dumbbell-shaped mass/density distribution is assumed to be necessary for optimal sensing of linear accelerations
    corecore