328 research outputs found

    Evaluating rudimentary prehistoric stone artifacts from the American southwest and Mexico

    Get PDF
    The goals and background of this study are presented. A sample of rudimentary artifacts, recovered through survey and excavation from contexts in the American Southwest and southern Mexico, were physically examined to verify or reject their assumed validity as tools and their use in agricultural activities. Macroscopic and microscopic examinations were undertaken on these often overlooked and misidentified artifacts to ascertain evidence of human manufacture and use-wear. The results of the study indicate the specimens represent three general form categories of tools that have uses related to excavation and earth moving. To augment this evidence, information was gathered regarding find contexts, historic records, and from relevant literature. The geographic find locations and contexts of the artifacts, as well as their temporal placement, and likely group affiliations, are then discussed. Evidence indicates that, although probably used for other purposes, these minimally-retouched, hand-held, digging and earth moving tools were used in the preparation and maintenance of agricultural fields and irrigation canals, and functioned to support the subsistence system from ca. 400-1450 CE. These implements evidently also held social and ceremonial values and functions. The rudimentary nature of these tools is often found not to be commensurate with the sophisticated complexity of the associated agricultural infrastructure. Initial, very tentative, hypotheses are presented for this incongruity

    An Archaeological Survey on the Xoxocotlan Piedmont, Oaxaca, Mexico

    Get PDF
    Surface survey on the piedmont near the present village of Xoxocotlan, Oaxaca, Mexico, has revealed the pattern of prehistoric settlement around an irrigation canal that distributed water from a dammed reservoir located on the flanks of Monte Alban. Intensive systematic collection techniques have permitted quantitative statements to be made about the density of occupation and the contribution of the irrigation system to the food supply of Monte Alban

    A pilot randomized clinical trial of intermittent occlusion therapy liquid crystal glasses versus traditional patching for treatment of moderate unilateral amblyopia

    Get PDF
    PURPOSE: To compare the effectiveness of intermittent occlusion therapy (IO therapy) using liquid crystal glasses and continuous occlusion therapy using traditional adhesive patches for treating amblyopia. METHODS: Children 3-8 years of age with previously untreated, moderate, unilateral amblyopia (visual acuity of 20/40 to 20/100 in the amblyopic eye) were enrolled in this randomized controlled trial. Amblyopia was associated with strabismus, anisometropia, or both. All subjects had worn any optimal refractive correction for at least 12 weeks without improvement. Subjects were randomized into two treatment groups: a 4-hour IO therapy group with liquid crystal glasses (Amblyz), set at 30-second opaque/transparent intervals (occluded 50% of wear time), and a 2-hour continuous patching group (occluded 100% of wear time). For each patient, visual acuity was measured using ATS-HOTV before and after 12 weeks of treatment. RESULTS: Data from 34 patients were available for analysis. Amblyopic eye visual acuity improvement from baseline was 0.15 ± 0.12 logMAR (95% CI, 0.09-0.15) in the IO therapy group (n = 19) and 0.15 ± 0.11 logMAR (95% CI, 0.1-0.15) in the patching group (n = 15). In both groups improvement was significant, but the difference between groups was not (P = 0.73). No adverse effects were reported. CONCLUSIONS: In this pilot study, IO therapy with liquid crystal glasses is not inferior to adhesive patching and is a promising alternative treatment for children 3-8 years of age with moderate amblyopia

    X-ray harmonic comb from relativistic electron spikes

    Get PDF
    X-ray devices are far superior to optical ones for providing nanometre spatial and attosecond temporal resolutions. Such resolution is indispensable in biology, medicine, physics, material sciences, and their applications. A bright ultrafast coherent X-ray source is highly desirable, for example, for the diffractive imaging of individual large molecules, viruses, or cells. Here we demonstrate experimentally a new compact X-ray source involving high-order harmonics produced by a relativistic-irradiance femtosecond laser in a gas target. In our first implementation using a 9 Terawatt laser, coherent soft X-rays are emitted with a comb-like spectrum reaching the 'water window' range. The generation mechanism is robust being based on phenomena inherent in relativistic laser plasmas: self-focusing, nonlinear wave generation accompanied by electron density singularities, and collective radiation by a compact electric charge. The formation of singularities (electron density spikes) is described by the elegant mathematical catastrophe theory, which explains sudden changes in various complex systems, from physics to social sciences. The new X-ray source has advantageous scalings, as the maximum harmonic order is proportional to the cube of the laser amplitude enhanced by relativistic self-focusing in plasma. This allows straightforward extension of the coherent X-ray generation to the keV and tens of keV spectral regions. The implemented X-ray source is remarkably easily accessible: the requirements for the laser can be met in a university-scale laboratory, the gas jet is a replenishable debris-free target, and the harmonics emanate directly from the gas jet without additional devices. Our results open the way to a compact coherent ultrashort brilliant X-ray source with single shot and high-repetition rate capabilities, suitable for numerous applications and diagnostics in many research fields

    Influence of laser polarization on collective electron dynamics in ultraintense laser-foil interactions

    Get PDF
    The collective response of electrons in an ultrathin foil target irradiated by an ultraintense laser pulse is investigated experimentally and via 3D particle-in-cell simulations. It is shown that if the target is sufficiently thin that the laser induces significant radiation pressure, but not thin enough to become relativistically transparent to the laser light, the resulting relativistic electron beam is elliptical, with the major axis of the ellipse directed along the laser polarization axis. When the target thickness is decreased such that it becomes relativistically transparent early in the interaction with the laser pulse, diffraction of the transmitted laser light occurs through a so called 'relativistic plasma aperture', inducing structure in the spatial-intensity profile of the beam of energetic electrons. It is shown that the electron beam profile can be modified by variation of the target thickness and degree of ellipticity in the laser polarization

    Recreating blood-brain barrier physiology and structure on chip: A novel neurovascular microfluidic bioreactor

    Get PDF
    The blood-brain barrier (BBB) is a critical structure that serves as the gatekeeper between the central nervous system and the rest of the body. It is the responsibility of the BBB to facilitate the entry of required nutrients into the brain and to exclude potentially harmful compounds; however, this complex structure has remained difficult to model faithfully in vitro. Accurate in vitro models are necessary for understanding how the BBB forms and functions, as well as for evaluating drug and toxin penetration across the barrier. Many previous models have failed to support all the cell types involved in the BBB formation and/or lacked the flow-created shear forces needed for mature tight junction formation. To address these issues and to help establish a more faithful in vitro model of the BBB, we have designed and fabricated a microfluidic device that is comprised of both a vascular chamber and a brain chamber separated by a porous membrane. This design allows for cell-to-cell communication between endothelial cells, astrocytes, and pericytes and independent perfusion of both compartments separated by the membrane. This NeuroVascular Unit (NVU) represents approximately one-millionth of the human brain, and hence, has sufficient cell mass to support a breadth of analytical measurements. The NVU has been validated with both fluorescein isothiocyanate (FITC)-dextran diffusion and transendothelial electrical resistance. The NVU has enabled in vitro modeling of the BBB using all human cell types and sampling effluent from both sides of the barrier

    Global redox proteome and phosphoproteome analysis reveals redox switch in Akt.

    Get PDF
    Protein oxidation sits at the intersection of multiple signalling pathways, yet the magnitude and extent of crosstalk between oxidation and other post-translational modifications remains unclear. Here, we delineate global changes in adipocyte signalling networks following acute oxidative stress and reveal considerable crosstalk between cysteine oxidation and phosphorylation-based signalling. Oxidation of key regulatory kinases, including Akt, mTOR and AMPK influences the fidelity rather than their absolute activation state, highlighting an unappreciated interplay between these modifications. Mechanistic analysis of the redox regulation of Akt identified two cysteine residues in the pleckstrin homology domain (C60 and C77) to be reversibly oxidized. Oxidation at these sites affected Akt recruitment to the plasma membrane by stabilizing the PIP3 binding pocket. Our data provide insights into the interplay between oxidative stress-derived redox signalling and protein phosphorylation networks and serve as a resource for understanding the contribution of cellular oxidation to a range of diseases

    Towards optical polarization control of laser-driven proton acceleration in foils undergoing relativistic transparency

    Get PDF
    Control of the collective response of plasma particles to intense laser light is intrinsic to relativistic optics, the development of compact laser-driven particle and radiation sources, as well as investigations of some laboratory astrophysics phenomena. We recently demonstrated that a relativistic plasma aperture produced in an ultra-thin foil at the focus of intense laser radiation can induce diffraction, enabling polarization-based control of the collective motion of plasma electrons. Here we show that under these conditions the electron dynamics are mapped into the beam of protons accelerated via strong charge-separation-induced electrostatic fields. It is demonstrated experimentally and numerically via 3D particle-in-cell simulations that the degree of ellipticity of the laser polarization strongly influences the spatial-intensity distribution of the beam of multi-MeV protons. The influence on both sheath accelerated and radiation pressure accelerated protons is investigated. This approach opens up new routes to control laser-driven ion sources

    Sensorimotor supremacy: Investigating conscious and unconscious vision by masked priming

    Get PDF
    According to the sensorimotor supremacy hypothesis, conscious perception draws on motor action. In the present report, we will sketch two lines of potential development in the field of masking research based on the sensorimotor supremacy hypothesis. In the first part of the report, evidence is reviewed that masked, invisible stimuli can affect motor responses, attention shifts, and semantic processes. After the review of the corresponding evidence – so-called masked priming effects – an approach based on the sensorimotor supremacy hypothesis is detailed as to how the question of a unitary mechanism of unconscious vision can be pursued by masked priming studies. In the second part of the report, different models and theories of backward masking and masked priming are reviewed. Types of models based on the sensorimotor hypothesis are discussed that can take into account ways in which sensorimotor processes (reflected in masked priming effects) can affect conscious vision under backward masking conditions

    Human BRCA1-BARD1 ubiquitin ligase activity counters chromatin barriers to DNA resection

    Get PDF
    The opposing activities of 53BP1 and BRCA1 influence pathway choice of DNA double-strand break repair. How BRCA1 counters the inhibitory effect of 53BP1 on DNA resection and homologous recombination is unknown. Here we identify the site of BRCA1-BARD1 required for priming ubiquitin transfer from E2~ubiquitin. We demonstrate that BRCA1-BARD1’s ubiquitin ligase activity is required for repositioning 53BP1 on damaged chromatin. We confirm H2A ubiquitylation by BRCA1-BARD1 and show that an H2A-ubiquitin fusion protein promotes DNA resection and repair in BARD1 deficient cells. We show BRCA1-BARD1 function in homologous recombination requires the chromatin remodeler SMARCAD1. SMARCAD1 binding to H2A-ubiquitin, optimal localization to sites of damage and activity in DNA repair requires its ubiquitin-binding CUE domains. SMARCAD1 is required for 53BP1 repositioning and the need for SMARCAD1 in Olaparib or camptothecin resistance is alleviated by 53BP1 loss. Thus BRCA1- BARD1 ligase activity and subsequent SMARCAD1-dependent chromatin remodeling are critical regulators of DNA repair
    corecore