61 research outputs found

    Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease

    Get PDF
    BACKGROUND: Clonal hematopoiesis of indeterminate potential (CHIP), which is defined as the presence of an expanded somatic blood-cell clone in persons without other hematologic abnormalities, is common among older persons and is associated with an increased risk of hematologic cancer. We previously found preliminary evidence for an association between CHIP and atherosclerotic cardiovascular disease, but the nature of this association was unclear. METHODS: We used whole-exome sequencing to detect the presence of CHIP in peripheral-blood cells and associated such presence with coronary heart disease using samples from four case-control studies that together enrolled 4726 participants with coronary heart disease and 3529 controls. To assess causality, we perturbed the function of Tet2, the second most commonly mutated gene linked to clonal hematopoiesis, in the hematopoietic cells of atherosclerosis-prone mice. RESULTS: In nested case-control analyses from two prospective cohorts, carriers of CHIP had a risk of coronary heart disease that was 1.9 times as great as in noncarriers (95% confidence interval [CI], 1.4 to 2.7). In two retrospective case-control cohorts for the evaluation of early-onset myocardial infarction, participants with CHIP had a risk of myocardial infarction that was 4.0 times as great as in noncarriers (95% CI, 2.4 to 6.7). Mutations in DNMT3A, TET2, ASXL1, and JAK2 were each individually associated with coronary heart disease. CHIP carriers with these mutations also had increased coronary-artery calcification, a marker of coronary atherosclerosis burden. Hypercholesterolemia-prone mice that were engrafted with bone marrow obtained from homozygous or heterozygous Tet2 knockout mice had larger atherosclerotic lesions in the aortic root and aorta than did mice that had received control bone marrow. Analyses of macrophages from Tet2 knockout mice showed elevated expression of several chemokine and cytokine genes that contribute to atherosclerosis. CONCLUSIONS: The presence of CHIP in peripheral-blood cells was associated with nearly a doubling in the risk of coronary heart disease in humans and with accelerated atherosclerosis in mice. (Funded by the National Institutes of Health and others.).Supported by a grant (R01HL082945) from the National Institutes of Health (NIH), the Edward P. Evans Foundation, the Leukemia and Lymphoma Society, and the Howard Hughes Faculty Scholars Program (to Dr. Ebert); a grant (5T32HL116324, to Dr. Jaiswal) from the NIH and a Burroughs Wellcome Career Award for Medical Sciences; the John S. LaDue Memorial Fellowship in Cardiology at Harvard Medical School (to Dr. Natarajan); the Ofer and Shelly Nemirovsky MGH Research Scholar Award (to Dr. Kathiresan); a grant (5U54HG003067, to Dr. Gabriel) from the NIH; a grant (R01-HL080472, to Dr. Libby) from the NIH and the RRM Charitable Fund; a grant (G0800270) from the U.K. Medical Research Council, a grant (SP/09/002) from the British Heart Foundation, the U.K. National Institute for Health Research Cambridge Biomedical Research Centre, a grant (268834) from the European Research Council, and a grant (HEALTH-F2-2012-279233) from the European Commission Framework Program 7 (all to Dr. Danesh); and grants from the National Heart, Lung, and Blood Institute, Pfizer, Regeneron, Eli Lilly, and Genentech (to Dr. Saleheen). Fieldwork and biochemical assays in PROMIS were funded through the University of Cambridge by the British Heart Foundation, U.K. Medical Research Council, Wellcome Trust, European Union Framework 6–funded Bloodomics Integrated Project, Pfizer, Novartis, Merck, the Center for Non-Communicable Diseases (in Pakistan), by project grants (RC2HL101834 and RC1TW008485) from the NIH, and by a grant (RC1TW008485) from the Fogarty International Center

    Clonal Hematopoiesis is Associated With Protection From Alzheimer\u27s Disease

    Get PDF
    Clonal hematopoiesis of indeterminate potential (CHIP) is a premalignant expansion of mutated hematopoietic stem cells. As CHIP-associated mutations are known to alter the development and function of myeloid cells, we hypothesized that CHIP may also be associated with the risk of Alzheimer\u27s disease (AD), a disease in which brain-resident myeloid cells are thought to have a major role. To perform association tests between CHIP and AD dementia, we analyzed blood DNA sequencing data from 1,362 individuals with AD and 4,368 individuals without AD. Individuals with CHIP had a lower risk of AD dementia (meta-analysis odds ratio (OR) = 0.64, P = 3.8 × 1

    Clonal Haematopoiesis and Risk of Chronic Liver Disease

    Get PDF
    Chronic liver disease is a major public health burden worldwide1. Although different aetiologies and mechanisms of liver injury exist, progression of chronic liver disease follows a common pathway of liver inflammation, injury and fibrosis2. Here we examined the association between clonal haematopoiesis of indeterminate potential (CHIP) and chronic liver disease in 214,563 individuals from 4 independent cohorts with whole-exome sequencing data (Framingham Heart Study, Atherosclerosis Risk in Communities Study, UK Biobank and Mass General Brigham Biobank). CHIP was associated with an increased risk of prevalent and incident chronic liver disease (odds ratio = 2.01, 95% confidence interval (95% CI) [1.46, 2.79]; P \u3c 0.001). Individuals with CHIP were more likely to demonstrate liver inflammation and fibrosis detectable by magnetic resonance imaging compared to those without CHIP (odds ratio = 1.74, 95% CI [1.16, 2.60]; P = 0.007). to assess potential causality, Mendelian randomization analyses showed that genetic predisposition to CHIP was associated with a greater risk of chronic liver disease (odds ratio = 2.37, 95% CI [1.57, 3.6]; P \u3c 0.001). In a dietary model of non-alcoholic steatohepatitis, mice transplanted with Tet2-deficient haematopoietic cells demonstrated more severe liver inflammation and fibrosis. These effects were mediated by the NLRP3 inflammasome and increased levels of expression of downstream inflammatory cytokines in Tet2-deficient macrophages. In summary, clonal haematopoiesis is associated with an elevated risk of liver inflammation and chronic liver disease progression through an aberrant inflammatory response

    The genetic determinants of recurrent somatic mutations in 43,693 blood genomes

    Get PDF
    Nononcogenic somatic mutations are thought to be uncommon and inconsequential. To test this, we analyzed 43,693 National Heart, Lung and Blood Institute Trans-Omics for Precision Medicine blood whole genomes from 37 cohorts and identified 7131 non-missense somatic mutations that are recurrently mutated in at least 50 individuals. These recurrent non-missense somatic mutations (RNMSMs) are not clearly explained by other clonal phenomena such as clonal hematopoiesis. RNMSM prevalence increased with age, with an average 50-year-old having 27 RNMSMs. Inherited germline variation associated with RNMSM acquisition. These variants were found in genes involved in adaptive immune function, proinflammatory cytokine production, and lymphoid lineage commitment. In addition, the presence of eight specific RNMSMs associated with blood cell traits at effect sizes comparable to Mendelian genetic mutations. Overall, we found that somatic mutations in blood are an unexpectedly common phenomenon with ancestry-specific determinants and human health consequences

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    It’s in the blood

    No full text

    Functional chitosan nanocarriers for potential applications in gene therapy

    No full text
    Functional chitosan nanocarriers for suicide gene therapy have been developed. Folic acid conjugated chitosan (FA-chitosan) was used to synthesize zinc sulphide quantum dots (ZnS QDs), which was further converted to chitosan nanocarriers, where the integrated FA acts as targeting, and the embedded QDs as imaging functionalities, respectively. The synthesized nanocarriers were almost spherical with sizes of ~ 75 nm and were nontoxic to the mammalian cell lines. Fluorescence of the QDs was exploited to image the cellular uptake of the nanocarriers. Binding of the plasmid DNA, containing the suicide genes encoding for cytosine deaminase-uracil phosphoribosyltransferase (pCD-UPRT) with the nanocarriers, was investigated by gel retardation assay. DNAse protection assay proved the stability of the nanocarrier-DNA complex. The functional effect of the nanocarriers to sensitize cell death represents a safe non-viral vector system for gene therapy

    One step synthesis of C-dots by microwave mediated caramelization of poly(ethylene glycol)

    No full text
    A rapid, simple and one step microwave mediated method for synthesizing C-dots using poly(ethylene glycol) (PEG) as a precursor and passivating agent is reported. The C-dots possessed low cytotoxicity, were amenable to separation by electrophoresis, photostable and entered cancer cells, making them suitable candidates for bioimaging and biolabelling

    Quantum dot impregnated-chitosan film for heavy metal ion sensing and removal

    No full text
    We report the use of biopolymer-stabilized ZnS quantum dots (Q-dots) for cation exchange reaction-based easy sensing and removal of heavy metal ions such as Hg<sup>2+</sup>, Ag<sup>+</sup>, and Pb<sup>2+</sup> in water. Chitosan-stabilized ZnS Q-dots were synthesized in aqueous medium and were observed to have been converted to HgS, Ag<sub>2</sub>S, and PbS Q-dots in the presence of corresponding ions. The transformed Q-dots showed characteristic color development, with Hg<sup>2+</sup> being exceptionally identifiable due to the visible bright yellow color formation, while brown coloration was observed in other metal ions. The cation exchange was driven by the difference in the solubility product of the reactant and the product Q-dots. The cation exchanged Q-dots preserved the morphology of the reactant Q-dots and displayed volume increase based on the bulk crystal lattice parameters. The band gap of the transformed Q-dots showed a major increase from the corresponding bulk band gap of the material, demonstrating the role of quantum confinement. Next, we fabricated ZnS Q-dot impregnated chitosan film which was used to remove heavy metal ions from contaminated water as measured using atomic absorption spectroscopy (AAS). The present system could suitably be used as a simple dipstick for elimination of heavy metal ion contamination in water
    • …
    corecore