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Summary

Chronic liver disease is a major public health burden worldwide1. Although different aetiologies 

and mechanisms of liver injury exist, progression of chronic liver disease follows a common 

pathway of liver inflammation, injury and fibrosis2. Here we examined the association between 

clonal haematopoiesis of indeterminate potential (CHIP) and chronic liver disease in 214,563 

individuals from 4 independent cohorts with whole-exome sequencing data (Framingham Heart 

Study, Atherosclerosis Risk in Communities Study, UK Biobank and Mass General Brigham 

Biobank). CHIP was associated with an increased risk of prevalent and incident chronic liver 

disease (odds ratio = 2.01, 95% confidence interval (95% CI) [1.46, 2.79]; P < 0.001). Individuals 

with CHIP were more likely to demonstrate liver inflammation and fibrosis detectable by magnetic 

resonance imaging compared to those without CHIP (odds ratio = 1.74, 95% CI [1.16, 2.60]; P 
= 0.007). To assess potential causality, Mendelian randomization analyses showed that genetic 

predisposition to CHIP was associated with a greater risk of chronic liver disease (odds ratio = 

2.37, 95% CI [1.57, 3.6]; P < 0.001). In a dietary model of non-alcoholic steatohepatitis, mice 

transplanted with Tet2-deficient haematopoietic cells demonstrated more severe liver inflammation 

and fibrosis. These effects were mediated by the NLRP3 inflammasome and increased levels of 

expression of downstream inflammatory cytokines in Tet2-deficient macrophages. In summary, 

clonal haematopoiesis is associated with an elevated risk of liver inflammation and chronic liver 

disease progression through an aberrant inflammatory response.

Chronic liver disease affects more than 30% of Americans in an age-dependent fashion3. 

Chronic liver disease is characterized by an inflammatory and fibrotic response to an 

initial insult, most commonly steatosis from excess alcohol consumption, obesity or 

viral hepatitis4, which progresses along a spectrum of histopathologic changes from 

liver fat accumulation (steatosis) to liver inflammation and hepatocyte ballooning injury 

(steatohepatitis), fibrosis and cirrhosis. However, the factors that influence progression from 

steatosis to inflammation and fibrosis are poorly understood.

Liver inflammation and fibrosis are mediated in part by non-parenchymal cells of the 

liver, including sinusoidal endothelial cells, dendritic cells, lymphocytes and macrophages. 
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Resident liver macrophages (Kupffer cells) and bone marrow-derived monocytes and 

macrophages have been implicated in responses to liver injury in both mouse models 

and humans5,6. In non-alcoholic fatty liver disease, macrophage recruitment is required 

for progression to non-alcoholic steatohepatitis (NASH), whereas inhibition of monocyte 

recruitment prevents disease progression in mouse models7,8,9. Furthermore, monocyte-

derived inflammatory macrophages are enriched in liver samples from patients who progress 

from NASH to cirrhosis8.

Dysregulated inflammatory responses in macrophages and other inflammatory cells can 

occur in the setting of CHIP, which is characterized by the expansion of haematopoietic 

cells bearing oncogenic somatic mutations most frequently in the genes DNMT3A, TET2 
and ASXL110. Whole-exome sequence analysis of blood DNA has led to the recognition 

that CHIP is a common phenomenon with increasing prevalence in older age, present in 

greater than 10% of people over 70 years old11,12,13. CHIP is associated with future risk 

of haematologic malignancy11,13, all-cause mortality11,13 and atherosclerotic cardiovascular 

disease14,15. Mouse models have revealed the proinflammatory role of macrophages derived 

from mutant CHIP clones and their contributions to atherogenesis14,16,17. Given the 

pervasive nature of circulating immune cells, we reasoned that CHIP could potentially 

influence the trajectory of steatohepatitis and cirrhosis through aberrant inflammation in the 

liver.

Here we test the hypothesis that CHIP is a risk factor for chronic liver disease by: 

associating CHIP with independent risk of chronic liver disease in four distinct cohorts; 

associating CHIP with subclinical advanced liver imaging biomarkers; causal inference with 

human germline genetics; causal inference in mouse models; and mechanistic inference 

using mouse models and human germline genetics.

CHIP association with liver disease

We examined whether CHIP is associated with an elevated risk of chronic liver disease, 

ascertained using clinician interview and International Classification of Diseases (ICD) 

codes in three cohorts (Table 1 and Supplementary Table 1). We tested the association of 

CHIP with prevalent chronic liver disease using data from the Framingham Heart Study 

(FHS, n = 4,230) and the Atherosclerosis Risk in Communities (ARIC, n = 7,414) study. 

We tested the association of CHIP with incident chronic liver disease using the subsample 

of the UK Biobank for which whole-exome sequencing had been carried out (n = 201,409) 

as well as the subsample of the UK Biobank for which array genotyping was carried out 

(n = 239,316). In these cohorts, the mean age range was 57–61 years and the standard 

deviation was 6–16 years. The prevalence of CHIP, ascertained by exome sequencing, varied 

between 4% and 9% (Table 1). As in previous cohorts, DNMT3A and TET2 were the most 

commonly mutated genes in CHIP (40%; Extended Data Fig. 1a). The prevalence of CHIP 

increased across cohorts with increasing age (Extended Data Fig. 1b). Known associations 

with CHIP, including age, sex, type 2 diabetes mellitus, smoking and self-reported ethnicity, 

showed similar associations to CHIP across cohorts (Supplementary Table 2). In the UK 

Biobank, CHIP variants ascertained through genotyping (Supplementary Table 3) had a high 

positive predictive value for exome sequencing-ascertained CHIP (90%), showed similar 
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association with age to CHIP ascertained by exome sequencing (odds ratio (OR) = 1.04 

per year; P < 0.001) and were strongly associated with incident myeloid haematologic 

malignancy (hazard ratio (HR) = 106, 95% CI [72, 158]; P < 0.001).

In FHS, individuals with CHIP with a variant allele fraction ≥ 10% (CHIP≥10%) were 

at increased odds of prevalent chronic liver disease after adjustment for age, sex, type 

2 diabetes and smoking (OR = 3.47, 95% CI [1.60, 7.51]; P = 0.0016; Fig. 1a). The 

association between CHIP and chronic liver disease in ARIC alone did not reach statistical 

significance (OR = 1.52, 95% CI [0.47, 4.93]; P = 0.46), nor did a cross-sectional analysis 

of UK Biobank data (OR = 1.16, 95% CI [0.61, 2.20]; P = 0.63; Supplementary Table 4). 

A fixed-effects model combining FHS and ARIC demonstrated a statistically significant 

association between CHIP and prevalent chronic liver disease (OR = 2.70, 95% CI [1.42, 

5.16]; P = 0.002; Fig. 1a). A meta-analysis of a cross-sectional cohort of individuals from 

UK Biobank, ARIC and FHS showed a significant effect of CHIP on risk of prevalent 

NASH (OR = 1.87, 95% CI [1.17, 3.01]; P = 0.008). In the UK Biobank, individuals 

with CHIP≥10% demonstrated increased risk for incident chronic liver disease (HR = 1.82, 

95% CI [1.25, 2.65]; P = 0.001) over a mean follow-up duration of 8.1 years (Fig. 1a 

and Supplementary Table 4). After excluding 39 cases of incident chronic liver disease 

that occurred within 1 year of enrolment, CHIP continued to be associated with incident 

chronic liver disease (HR = 1.53, 95% CI [1.02, 2.30]; P = 0.038). Overall, CHIP≥10% was 

associated with a twofold increased risk of prevalent or incident chronic liver disease (OR = 

2.01, 95% CI [1.46, 2.79]; P < 0.001; Fig. 1a). No evidence of heterogeneity was observed 

between estimates among cohorts or estimates between prevalent and incident chronic liver 

disease (τ2 = 0.1012; P = 0.17). Individuals with CHIP continued to be at elevated risk 

of chronic liver disease after adjusting for baseline alcohol consumption, body mass index, 

alanine transaminase levels, aspartate transaminase levels and alkaline phosphatase levels 

(OR = 2.11, 95% CI [1.80, 2.47]; P < 0.001). When interaction terms between CHIP status, 

current smoking and alcohol consumption in weekly drinks were included in the model, 

there was no statistically significant interaction between current smoking (pinteraction = 0.48) 

or alcohol consumption in weekly drinks (pinteraction = 0.95).

CHIP with variant allele fraction < 10% was not significantly associated with chronic liver 

disease (OR = 1.28, 95% CI [0.75, 2.19]; P = 0.37; Extended Data Fig. 2a). JAK2-mutant 

CHIP was associated with a highly elevated risk of chronic liver disease (OR = 17.65, 

95% CI [4.32, 72.15]; P < 0.001), potentially due to established prothrombotic effects; 

nevertheless, non-JAK2-mutant CHIP was also associated with an elevated risk of chronic 

liver disease (OR = 1.88, 95% CI [1.09, 3.24]; P = 0.02; Extended Data Fig. 2b). TET2-

mutant CHIP was independently associated with an elevated risk of chronic liver disease 

(OR = 5.35, 95% CI [2.22, 12.93]; P < 0.001; Extended Data Fig. 2b). Using Firth’s logistic 

regression for low exposure counts provided similar estimates. JAK2-mutated CHIP was 

associated with a 16-fold increased risk of chronic liver disease (OR = 15.9, 95% CI [4.7, 

54.4]; P = 1 × 10−5), non-JAK2-mutated CHIP was associated with a twofold increased risk 

of chronic liver disease (OR = 2.0, 95% CI [1.2, 3.4]; P = 0.01), and TET2-mutated CHIP 

was associated with a fivefold increased risk of chronic liver disease (OR = 5.5, 95% CI 

[2.4, 12.7]; P = 8 × 10−5). Autosomal chromosomal mosaicism of blood cells, a form of 

Wong et al. Page 5

Nature. Author manuscript; available in PMC 2023 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



clonal haematopoiesis that is distinct from CHIP18, was not significantly associated with 

chronic liver disease risk in the UK Biobank (OR = 1.18, 95% CI [0.97, 1.45]; P = 0.10).

We next examined cumulative risk of chronic liver disease in the UK Biobank by array-

derived CHIP status. Individuals without CHIP had a 1% cumulative incidence of chronic 

liver disease by the age of 80 years. By contrast, individuals with CHIP had a 6% cumulative 

incidence of liver disease (P < 0.001; Extended Data Fig. 2c,d). In comparison, individuals 

with morbid obesity (body mass index > 35 kg m−2) without CHIP had a 2.5% cumulative 

incidence of liver disease. Mutual modelling of CHIP and clinical risk factors of chronic 

liver disease showed that CHIP association with chronic liver disease is comparable to that 

of well-known risk factors, such as obesity (Supplementary Table 5).

We next examined cumulative risk of chronic liver disease in the UK Biobank by array-

derived CHIP status. Individuals without CHIP had a 1% cumulative incidence of chronic 

liver disease by age 80 years. In contrast, individuals with CHIP had a 6% cumulative 

incidence of liver disease (p<0.001, Extended Data Fig. 2c-d). In comparison, individuals 

with morbid obesity (BMI > 35 kg/m2) without CHIP had a 2.5% cumulative incidence of 

liver disease. Mutual modeling of CHIP and clinical risk factors of chronic liver disease 

showed that CHIP association with chronic liver disease is comparable to that of well-known 

risk factors, such as obesity (Supplementary Table 5).

When the subtypes of liver disease were examined, individuals with CHIP were at 

significantly elevated risk of NASH (OR = 1.81, 95% CI [1.23, 2.68]; P = 0.0028; Fig. 

1b and Supplementary Table 6) but not alcohol-related liver disease (OR = 1.74, 95% CI 

[0.92, 2.20]; P = 0.089; Fig. 1b). Only seven individuals with virus-related chronic liver 

disease (chronic liver disease and a history of hepatitis C or hepatitis B) could be identified, 

preventing ascertainment of the association of CHIP with viral hepatitis-related chronic 

liver disease. To further confirm the association of CHIP with NASH, we identified 114 

individuals with biopsy-proven NASH and 1,368 matched controls in the Mass General 

Brigham (MGB) Biobank (Supplementary Table 7). Patients with biopsy-proven NASH 

were four times as likely to have CHIP as control subjects (OR = 3.99, 95% CI [1.24, 

12.84]; P = 0.02; Fig. 1c).

Causality of CHIP and liver disease

To assess whether the association of CHIP status with chronic liver disease is causal, 

we carried out Mendelian randomization analysis. We identified 184 independent genetic 

variants associated with CHIP status at P < 0.0001 significance from a recent genome-

wide association study (GWAS) comprising 97,691 blood DNA-derived whole-genome 

sequences19 (Supplementary Table 8). We tested the association of these variants with 

cirrhosis risk using summary statistics from a GWAS of 5,770 cirrhosis cases and 487,780 

controls20. Using the Mendelian randomization with robust adjusted profile score (MR-

RAPS) method, which increases power to detect a significant effect of genetic predisposition 

to CHIP and accounts for potential directional pleiotropy, CHIP was associated with a 

twofold increased risk of chronic liver disease (OR = 2.37, 95% CI [1.57, 3.6]; P < 0.001; 

Fig. 1d). This estimate did not differ significantly from the observational estimate (pinteraction 
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= 0.78). Similar estimates were obtained in sensitivity analyses using the pleiotropy-robust 

Mendelian randomization methods MR-median regression and MR-PRESSO, multivariate 

MR, and MR-RAPS with varying P-value thresholds for inclusion of instrumental SNPs 

(Supplementary Table 9).

MR-Egger regression demonstrated a larger effect estimate compared to all other analyses 

and exhibited a significant non-zero intercept (P = 0.008) suggestive of directional 

pleiotropy; that is, certain genetic variants may exert direct effects on chronic liver disease 

regardless of their associations with CHIP (Extended Data Fig. 3a and Supplementary Table 

9). Potentially pleiotropic genetic variants that are associated with body mass index, type 2 

diabetes, lipid levels, blood pressure, current smoking and alcohol consumption, and other 

confounders were specifically excluded from MR-RAPS analysis with similar estimates 

(Supplementary Tables 9 and 10). Nevertheless, it remains likely that alternative causal 

pathways can impact CHIP and chronic liver disease in parallel, potentially through common 

mechanisms in responding to inflammatory stimuli in both settings. To further demonstrate 

specificity of the MR framework for CHIP, we carried out a phenome-wide Mendelian 

randomization analysis across twenty-two phenotypes, including risk factors for cardiac 

conditions, autoimmune diseases and solid malignancies. Apart from CHIP association with 

chronic liver disease, we did not observe any additional significant associations in this 

analysis, suggesting that the association between CHIP and chronic liver disease is specific 

(Extended Data Fig. 3b). As confirmation of the robustness of the MR-RAPS framework, 

genetic predisposition to CHIP was significantly associated with the development of 

myeloproliferative neoplasms (OR = 39.4, 95% CI [5.2, 188.0]; P < 0.001), consistent 

with the known association between CHIP and haematologic malignancies11,21. By contrast, 

MR-Egger did not demonstrate a significant intercept term for myeloproliferative neoplasm 

(OR = 30.8, 95% CI [9.8, 51.8]; P = 0.004).

Association with liver imaging and biomarkers

We studied whether CHIP may be associated with increased liver inflammation and fibrosis 

using magnetic resonance imaging data from 8,251 individuals in the UK Biobank. CHIP 

was associated with increased likelihood of liver inflammation and fibrosis (iron-corrected 

T1 relaxation time (cT1) ≥ 795 ms; OR = 1.74, 95% CI [1.16, 2.60]; P = 0.007) but was 

not significantly associated with hepatic steatosis (proton density fat fraction ≥ 5%, OR = 

0.98, 95% CI [0.75, 1.28]; P = 0.89; Fig. 2a,b). Using data from the UK Biobank, we also 

examined the relationship between CHIP and serum biomarkers in up to 393,128 individuals 

(Extended Data Fig. 4a). There were no statistical associations between CHIP and alanine 

transaminase levels or aspartate transaminase levels, but CHIP was significantly associated 

with a modest increase in γ-glutamyl transferase (1.1 U l−1; P = 0.0062). CHIP was also 

associated with a modest elevation in platelet count (6,500 per microlitre; P < 0.001) and 

leukocyte count (0.21 × 109 cells l−1; P = 0.01). When JAK2 CHIP was excluded, CHIP 

continued to be associated with elevations in platelet and leukocyte counts and γ-glutamyl 

transferase (Extended Data Fig. 4b). When TET2 CHIP was excluded, CHIP continued to be 

associated with increased platelet and leukocyte counts, but not with γ-glutamyl transferase 

(Extended Data Fig. 4c).
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Tet2−/− hematopoiesis promotes steatohepatitis

To examine whether Tet2 deficiency has a role in chronic liver inflammation, we utilized 

mouse models of steatohepatitis in which fatty liver and chronic inflammation are induced 

by diet. Choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) disrupts hepatic 

mitochondrial β-oxidation and production of very low-density lipoprotein, resulting in liver 

oxidative damage, chronic liver injury and elevated serum aminotransferases22,23 (Extended 

Data Fig. 5). B6.SJL mice were transplanted with Tet2−/− or control bone marrow cells and 

fed CDAHFD for 11 weeks, after which liver fat, inflammation and hepatocyte ballooning 

injury were assessed histologically and integrated into a modified non-alcoholic fatty liver 

disease activity score (NAS; Supplementary Table 11). Mice transplanted with Tet2−/− 

haematopoietic cells consumed less CDAHFD daily (although this difference was not 

statistically significant) and showed slightly reduced hepatomegaly (Extended Data Fig. 

5). Lower dietary intake notwithstanding, Tet2−/−-transplanted mice demonstrated similar 

liver fat accumulation and serum metabolic and haematologic parameters to those of control-

transplanted mice (Extended Data Figs. 5 and 6). By contrast, Tet2−/−-transplanted animals 

showed more lobular inflammation with prominent lymphoid aggregates and hepatocyte 

ballooning, but liver fat accumulation was not affected (Fig. 2c-f). Overall, these changes 

corresponded to higher cumulative NAS (Fig. 2g). Supporting the histologic findings, bulk 

liver mRNA from Tet2−/−-transplanted mice showed enrichment in transcriptional programs 

associated with steatohepatitis and liver fibrosis (Extended Data Fig. 7a). These findings 

demonstrate that Tet2−/− haematopoietic cells promote the development of steatohepatitis in 

mice.

Similar findings of increased liver inflammation and increased hepatocyte damage were 

observed in hypercholesterolemic Ldlr−/− mice transplanted with Tet2−/− bone marrow 

cells and fed Western diet (Extended Data Fig. 7b-g). Furthermore, transplantation of 

haematopoietic cells lacking Dnmt3a, the most commonly mutated gene in CHIP, also 

led to increased liver inflammation and higher aggregate NAS in CDAHFD-fed mice 

(Extended Data Fig. 7h). Therefore, we found that mutant haematopoietic cells lacking 

Tet2 or Dnmt3a aggravate chronic liver injury in different dietary and genetic models that 

promote steatohepatitis.

To study the persistence of liver injury in the setting of mutant haematopoiesis, Tet2−/−-

transplanted animals were fed CDAHFD for 11 weeks and subsequently fed standard chow 

for 10 days. We observed a global decrease in steatohepatitis after diet reversion, reflected 

in lower NAS scores. Nevertheless, unlike liver fat, liver inflammation and hepatocyte 

ballooning injury remained statistically significantly higher in Tet2−/−-transplanted mice 

compared to wild-type controls (Extended Data Fig. 7i). These findings suggest that 

persistent liver inflammation and injury mediated by Tet2−/− haematopoietic cells may 

promote chronic liver disease in the setting of repeated liver insults24. Persistent liver 

inflammation can also stimulate inflammatory scarring and fibrosis of the liver6. Although 

liver fibrosis gene signatures were enriched in Tet2−/−-transplanted mice (Extended Data 

Fig. 7a), significant liver fibrosis was not observed histologically in Tet2−/−- and control-

transplanted animals after 11 weeks of CDAHFD (Extended Data Fig. 7g). Therefore, mice 

were diet-fed for an extended duration. At 19 weeks, Tet2−/−-transplanted mice showed 

Wong et al. Page 8

Nature. Author manuscript; available in PMC 2023 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



significantly increased liver fibrosis compared to that of wild-type controls (Fig. 2h). 

This finding demonstrates that haematopoietic loss of Tet2 promotes the progression of 

steatohepatitis to liver fibrosis in CDAHFD-fed mice.

Tet2−/− macrophages mediate liver injury

To identify the cell lineages in Tet2-deficient haematopoiesis that contribute to NASH 

progression, we carried out in vitro experiments in which wild-type hepatic stellate cells 

were grown in the presence of purified haematopoietic cell populations from Tet2−/− and 

wild-type control mice. RNA sequencing of hepatic stellate cells co-cultured with hepatic 

macrophages specifically showed transcriptional upregulation of genes known to be involved 

in the fibrogenic activation of hepatic stellate cells, such as Col4a1, Col4a2, Lox, Loxl2 
and Timp1 (Extended Data Fig. 8a). Gene set enrichment analysis confirmed that direct 

co-culture with wild-type or Tet2−/− hepatic macrophages, Transwell culture with Tet2−/− 

hepatic macrophages and direct culture with Tet2−/− B cells led to a significant enrichment 

of gene signatures characteristic of hepatic stellate cell activation (Extended Data Fig. 8b). 

Therefore, hepatic macrophages are an important haematopoietic cell type in promoting 

the liver’s fibrogenic response, either directly or, more likely, by means of increased 

inflammatory signals.

Liver-resident phagocytes, namely Kupffer cells, are a major source of proinflammatory 

cytokine secretion in response to immune stimuli and inflammasome activation. After 

haematopoietic transplant, Kupffer cells, which express F4/80+CD11bmod, are replaced 

by donor-derived cells expressing the CD45.1 congenic marker25,26 (Extended Data Fig. 

9a). Subsequent feeding with CDAHFD promotes the accumulation of donor-derived 

F4/80modCD11bhi hepatic macrophages, which form crown-like structures in the liver 

(Extended Data Fig. 9b). Compared to wild-type cells, Tet2−/− hepatic macrophages in 

bone marrow-transplanted, CDAHFD-fed mice showed increased levels of expression of Il6 
and Cxcl1 (Fig. 3a) as well as enrichment in proinflammatory gene signatures (Extended 

Data Fig. 9c). Serum levels of interleukin-6 (IL-6), CXCL1, CCL22 and CCL17 were also 

increased in mice transplanted with Tet2−/− bone marrow (Fig. 3b). CXCL1 and IL-6 are 

proinflammatory molecules regulated by the NLRP3 inflammasome complex, whereas the 

related chemokines CCL17 and CCL22 signal through CCR4 to promote the recruitment 

of regulatory T cells27. Confirming the key role of NLRP3 in mediating downstream 

proinflammatory cytokine secretion, bone marrow-derived macrophages lacking Tet2 
showed increased secretion of IL-6, CXCL1, CCL22 and CCL17, whereas cells lacking both 

Tet2 and Nlrp3 showed baseline expression levels (Fig. 3c). Therefore, haematopoietic Tet2 
loss exerts a proinflammatory effect in macrophages through downstream cytokine secretion 

in an NLRP3-dependent fashion. Furthermore, mice transplanted with Tet2−/−Nlrp3−/− 

bone marrow and fed CDAHFD for 11 weeks showed significantly reduced liver 

inflammation and hepatocyte ballooning compared to Tet2−/−-transplanted mice, resulting 

in overall lower NAS (Fig. 2c,g). Together, these findings support a model in which 

Tet2-deficient haematopoiesis induces NLRP3-dependent proinflammatory signals in liver-

resident immune cells to promote steatohepatitis and fibrosis.
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Previous work had revealed that a damaging IL-6 receptor gene (IL6R) missense variant 

(p.Asp358Ala, rs2228145) is associated with greater protection from coronary artery disease 

in humans with CHIP15. Therefore, we examined whether this variant is also associated 

with protection from chronic liver disease among individuals with CHIP compared to those 

without CHIP. We observed a significant interaction in the association of p.Asp358Ala with 

chronic liver disease by CHIP status (pinteraction = 0.02). Among individuals without CHIP, 

there was no significant association between p.Asp358Ala and chronic liver disease risk (OR 

= 1.07, 95% CI [0.92, 1.25]; P = 0.4). By contrast, p.Asp358Ala protected against chronic 

liver disease among individuals with CHIP (OR = 0.44, 95% CI [0.21, 0.93]; P = 0.03; Fig. 

3a). This finding implicates proinflammatory IL-6 signalling in the contribution of CHIP to 

chronic liver disease.

Discussion

By combining large-scale human genetic studies with in vivo modelling of clonal 

haematopoiesis in mouse models, we demonstrate that CHIP is associated with an elevated 

risk of chronic liver disease, including NASH, via aberrant inflammatory responses. The 

overall nearly twofold increased risk of incident chronic liver disease observed in the current 

study is comparable to the nearly twofold increased risk of incident coronary artery disease 

previously reported with CHIP in overlapping cohorts14,15. Mendelian randomization and 

mouse studies support a causal role for CHIP in the pathogenesis of chronic liver disease. 

Furthermore, Mendelian randomization analyses and in vivo inflammatory biomarker and 

transcriptional analyses implicate the NLRP3 inflammasome and downstream IL-6 activity 

in CHIP-associated chronic liver disease.

Our findings support a model of CHIP promoting steatohepatitis particularly among 

individuals with elevated liver fat or other sources of liver injury that increase cirrhosis 

risk24. First, individuals with CHIP showed higher indices of liver inflammation and fibrosis 

with no significant difference in liver fat accumulation. Second, haematopoietic-specific 

Tet2 inactivation increased the severity of diet-induced steatohepatitis in mice owing to 

increased liver inflammation, hepatocyte ballooning injury and fibrosis, without apparent 

influence on liver fat. Unlike germline genetic variants that predispose to both liver fat and 

cirrhosis20, CHIP tends to exaggerate the proinflammatory response to a present stimulus, 

which in the setting of NASH results in enhanced activation of local immune and fibrogenic 

pathways in the fatty liver. Haematopoietic loss of Tet2 also causes glucose intolerance28, 

a significant risk factor for NASH progression due to increased oxidative and inflammatory 

stress.

We also provide human genetic evidence for a potential causal relationship between CHIP 

and liver disease. Mendelian randomization analysis is useful for distinguishing between 

outcomes that may be caused by CHIP and those from other confounding associations. 

To optimize statistical power in the setting of low heritability of CHIP19, we applied a 

Mendelian randomization technique (MR-RAPS) that allows for the use of subgenome-wide 

significant variants29. We observed that germline genetic predisposition to CHIP predisposes 

to chronic liver disease risk. Therefore, CHIP is probably a causal risk factor for chronic 

liver disease. Consequently, targeting factors that promote CHIP-associated liver injury as 
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well as targeting CHIP itself are both expected to reduce the risk of chronic liver disease 

among susceptible individuals.

Genetic deficiency of IL-6 signalling due to the presence of IL6R p.Asp358Ala in CHIP 

individuals was associated with a greater reduction in chronic liver disease risk, but not 

among those without CHIP. This finding is compatible with our previous observation 

that the presence of IL6R p.Asp358Ala was associated with a markedly reduced risk for 

incident cardiovascular disease risk, but not haematologic malignancy, specifically among 

individuals with CHIP15. In the current study, we observed increased serum IL-6 levels in 

mice transplanted with Tet2−/− bone marrow; furthermore, Tet2−/− liver macrophages also 

showed increased expression of IL-6 and other proinflammatory cytokines and chemokines 

with important roles in chronic liver disease. The role of IL-6 in steatohepatitis is complex, 

with dual activity in the acute-phase response and liver regeneration30,31. In addition, we 

have demonstrated that steatohepatitis is further modulated by bone marrow inflammatory 

cells, which exhibit increased IL-6 inflammatory activity in the absence of Tet2. This 

process requires the upstream regulator NLRP3, which is recognized as a central hub of the 

inflammatory immune response in hepatic parenchymal and non-parenchymal cells32,33,34. 

Considering the heterogeneous nature of the cell types involved, broad pharmacologic 

inhibition of the NLRP3 inflammasome32 is one potential strategy for modifying liver 

inflammation and fibrosis in CHIP. Although liver toxicity has been reported with use of 

the NLRP3 inhibitor MCC950, raising particular concern in this group of patients, we 

suggest that NLRP3 inhibition may be protective against liver injury in susceptible CHIP 

individuals in whom the NLRP3-dependent inflammatory input is exaggerated specifically 

in haematopoietic cells. Further in vivo and preclinical testing will be required to determine 

safety.

In conclusion, CHIP is associated with an elevated risk of chronic liver disease specifically 

through the promotion of liver inflammation and injury. Through targeting of the NLRP3 

inflammasome or downstream mediators, CHIP may be a modifiable risk factor for chronic 

liver disease.

Methods

Study samples

Secondary analysis of data from clinical studies involving human participants was approved 

by the MGB Institutional Review Board. We examined the association between CHIP and 

chronic liver disease using five datasets. For analysis of prevalent disease, we used data 

from the FHS (n = 4,114) and ARIC (n = 7,414; Table 1) studies. For analysis of incident 

disease, we tested the association of CHIP and genotyped CHIP variants with incident 

chronic liver disease in distinct groups of individuals from the UK Biobank who underwent 

whole-exome sequencing (n = 201,409) and a separate subsample of individuals from the 

UK Biobank who underwent array-based genotyping using genotyped CHIP variants (n = 

239,316). Only a subset of CHIP variants were available on the genotyped UK Biobank 

array (Supplementary Table 3). Individuals with prevalent leukaemia or other haematologic 

malignancy were excluded from analysis. All patients with whole-exome sequencing data 
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from FHS, ARIC and the UK Biobank were included in the analysis. Median duration of 

follow up for incident disease analysis was 8.1 years.

We defined chronic liver disease as the development of liver fibrosis or cirrhosis, combining 

the following ICD10 diagnostic codes: K70.2 (alcoholic fibrosis and sclerosis of the liver), 

K70.3 (alcoholic cirrhosis of the liver), K70.4 (alcoholic hepatic failure), K74.0 (hepatic 

fibrosis), K74.1 (hepatic sclerosis), K74.2 (hepatic fibrosis with hepatic sclerosis), K74.6 

(other and unspecified cirrhosis of liver), K76.6 (portal hypertension) and I85 (oesophageal 

varices). These ICD codes have previously been demonstrated to have high specificity for 

identification of patients with cirrhosis compared to physician review and associate strongly 

with known cirrhosis loci20.

In addition to examining all-cause chronic liver disease, we also examined the association of 

CHIP with subtypes of chronic liver disease. Non-alcoholic fatty liver disease was defined 

as chronic liver disease among individuals consuming fewer than 21 drinks per week for 

men and fewer than 14 drinks per week for women and no history of hepatitis B or hepatitis 

C as outlined in the American Association for the Study of Liver Diseases guidelines35. 

Alcohol-related liver disease was defined as chronic liver disease among individuals with 

excess alcohol intake (≥21 drinks per week for men or ≥14 drinks per week for women) and 

no history of hepatitis B or hepatitis C. Seven individuals with liver disease and a known 

history of hepatitis B or hepatitis C were excluded from the analysis of CHIP association 

with subtypes of chronic liver disease.

As the above analyses of chronic liver disease were based primarily on ICD10 codes, 

we also examined whether CHIP predisposes to biopsy-proven NASH (n = 1,482). For 

this analysis, we analysed 114 individuals with biopsy-proven NASH and 1,368 control 

individuals in the MGB Biobank matched for age, sex, type 2 diabetes, body mass index and 

smoking.

To examine whether CHIP is associated with serum biomarker levels or liver imaging 

findings, we used data from the UK Biobank. Blood samples were collected from all UK 

Biobank participants during their initial enrolment visit. These samples were used for both 

whole-exome sequencing and for biomarker assays. In a cross-sectional analysis, we tested 

the association between CHIP and inverse-normal-transformed values of serum liver enzyme 

levels (alanine transaminase levels, aspartate transaminase levels, alkaline phosphatase levels 

and γ-glutamyl transferase levels) and serum inflammatory biomarkers (C-reactive protein, 

platelet count, haemoglobin and white blood cell count). Serum liver enzyme levels and 

C-reactive protein were measured by immunoassay using a Beckman Coulter AU5800 

analyser. Blood cell counts were measured using a Beckman Coulter LH 750 analyser.

We examined whether CHIP status was associated with liver fat and/or liver inflammation 

and fibrosis in 4,434 individuals in the UK Biobank with whole-exome sequencing data who 

underwent MultiScan magnetic resonance imaging of their liver36. Liver fat was measured 

using the proton density fat fraction. The likelihood of liver inflammation and fibrosis was 

measured using cT136.
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Whole-exome sequencing and CHIP ascertainment

Whole-exome sequences from 7,414 individuals in ARIC were obtained from dbGAP 

(accession phs000280). DNA from ARIC was obtained from whole-blood samples at 

the time of study enrolment. For FHS, exome sequencing was carried out as part of 

the Trans-Omics for Precision Medicine (TOPMed) programme. In the UK Biobank, 

whole-exome sequencing was carried out centrally at the Regeneron Genetics Center. We 

analysed 201,309 whole exomes from unrelated individuals in the UK Biobank. CHIP 

in MGB Biobank participants was ascertained through whole-exome sequencing of blood 

samples deposited at the time of enrolment. Individuals with prevalent leukaemia or other 

haematologic malignancy were excluded from analysis.

We identified individuals with CHIP on the basis of a prespecified list of variants in 

74 genes that are recurrently mutated in myeloid cancers (Supplementary Table 12). For 

analyses of FHS and ARIC cohorts for prevalent liver disease, CHIP was ascertained using 

whole-exome sequencing15,19. For analysis of the UK Biobank cohort for incident liver 

disease, CHIP was ascertained using whole-exome sequencing in the subset of individuals 

for whom exome sequencing data were available (n = 201,409). For the UK Biobank subset 

in which genotyping array data were available (n = 239,316), CHIP was ascertained using 

array-derived genotyped variants in ASXL1, DNMT3A, JAK2 and TET2 (Supplementary 

Table 3). We examined genotyping fidelity of each variant by manually examining imaging 

files with ScatterShot. Individuals included in whole-exome sequencing and prevalence 

analysis were excluded from this analysis. In the primary analysis, we examined CHIP with 

a variant allele fraction ≥10%. We analysed CHIP with a variant allele fraction below 10% 

separately.

Mouse models

Ldlr−/−, B6.SJL and C57BL/6J mice at 8 weeks were exposed to 10 Gy total body 

irradiation and transplanted through retro-orbital injection with 1,000,000 to 2,000,000 

bone marrow cells collected from sex-matched vavCre+Tet2fl/−, vavCre+Tet2fl/−Nlrp3−/−, 

vavCre+Dnmt3afl/− or control vavCre+ donor mice aged between 8 and 11 weeks. 

After haematopoietic reconstitution was confirmed by peripheral blood analysis and flow 

cytometry at 4 weeks, transplanted mice were fed an atherogenic Western diet containing 

0.2% cholesterol and 42% of its kilocalories from fat (TD.88137; Envigo) or CDAHFD 

containing 60% of its kilocalories from fat and 0.1% methionine (A06071302; Research 

Diets) in non-metabolic cages for defined time periods. Mice were randomly assigned to 

each donor group; sample size calculations were not carried out. All animal experiments 

were conducted in accordance with ethical guidelines and were approved by the Institutional 

Animal Care and Use Committee (IACUC) at Brigham and Women’s Hospital and Dana-

Farber Cancer Institute.

Liver histology

Mouse livers were fixed in 10% formalin for at least 24 h. Paraffin-embedded tissue 

blocks were sectioned and stained using haematoxylin and eosin for blinded grading 

of steatohepatitis according to modified CRN criteria37 (Supplementary Table 11). Liver 
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fibrosis was measured by histologic grading of Masson’s trichrome staining or quantification 

of Picrosirius red positivity using ImageJ.

Mouse peripheral blood analysis

Peripheral blood was collected from the retro-orbital sinus into EDTA tubes. Complete 

blood counts were obtained using a Hemavet 950 or Heska Element HT5 analyser. After 

red cell lysis, cells were resuspended in PBS supplemented with 2% FBS for flow 

cytometric analysis. Plasma was obtained by centrifugation at 1,000g for 10 min at 4 

°C. Cytokine levels were measured by Eve Technologies using a Luminex-based mouse 

cytokine–chemokine magnetic bead panel.

Cell isolation

Bone marrow cells were obtained by crushing mouse femur, tibia, pelvis and vertebrae in 

cold PBS containing 2% fetal bovine serum and 2 mM EDTA. The cell suspension was 

filtered through a 70-μm mesh filter and centrifuged at 1,200 r.p.m. for 5 min at 4 °C. After 

red blood cell lysis, bone marrow cells were resuspended in cold PBS containing 2% fetal 

bovine serum for use.

Mouse livers were perfused via the hepatic portal vein with 10 ml cold PBS followed by 

5 ml of digestion mix containing 850 mg ml−1 collagenase I, 700 mg ml−1 collagenase D, 

1 mg ml−1 Dispase II and 100 ng ml−1 DNase I in RPMI. After 5 min, livers were diced 

and agitated for 15 min in an orbital shaker at 37 °C and filtered through a 70-μm mesh 

filter. Parenchymal cells were removed by centrifugation at 50g for 2 min. The supernatant 

was centrifuged at 1,200 r.p.m. for 5 min, and the cell pellet was washed once with DMEM. 

Non-parenchymal cells were resuspended and laid on top of four OptiPrep gradients (1.085, 

1.058, 1.043 and 1.034) and centrifuged in an SW-41Ti rotor at 20,000 r.p.m. for 15 min 

at 25 °C. Hepatic stellate cells were collected from the 1.007–1.034–1.043 interface and 

hepatic macrophages were collected from the 1.043–1.058 and 1.058–1.085 interfaces and 

further purified using negative selection by CD45 microbeads and positive selection by 

CD11b microbeads, respectively.

Flow cytometry/FACS

Flow cytometric analysis was carried out on a BD FACScanto II analyser; cell sorting was 

carried out on a Sony MA900 cell sorter. The following antibodies were used: rat anti-mouse 

CD3 PE–Cy7 or PerCP–Cy5.5 (17A2); rat anti-human/mouse CD11b APC–Cy7 (M1/70); 

rat anti-human/mouse CD45R/B220 PerCP–Cy5.5 or BV510 (RA3-6B2); mouse anti-mouse 

CD45.1 FITC or BV510 (A20); mouse anti-mouse CD45.2 PE or Pacific blue (104); rat 

anti-mouse F4/80 FITC (BM8); rat anti-mouse Gr1 Pacific blue (RB6-8C5); rat anti-mouse 

Ly6C PE–Cy7 or APC (HK1.4); rat anti-mouse Ly6G PE–Cy7 (1A8); mouse anti-mouse 

NK1.1 PerCP–Cy5.5 (PK136).

Cell culture

Bone marrow cells were cultured in RPMI supplemented with 10% fetal bovine serum, 

100 U ml−1 penicillin/streptomycin and 2 mM L-glutamine. Macrophage differentiation was 

induced using 10 ng ml−1 recombinant M-CSF (Preprotech) and terminal differentiation was 

Wong et al. Page 14

Nature. Author manuscript; available in PMC 2023 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



confirmed by flow cytometric analysis after 8 days. Macrophages were exposed to 10 ng 

ml−1 LPS (Sigma) for 2 h and stimulated for 6 h with palmitic acid (300 μM; Sigma) or 

cholesterol monohydrate crystals (200 μg ml−1; Sigma) prepared as previously described38. 

Culture supernatant was centrifuged at 1,000g for 10 min at 4 °C and cytokine levels 

were measured by Eve Technologies using a Luminex-based mouse cytokine–chemokine 

magnetic bead panel.

Hepatic stellate cells, hepatic macrophages and purified lymphocytes were cultured in RPMI 

supplemented with 10% fetal bovine serum, 100 U ml−1 penicillin–streptomycin, 2 mM L-

glutamine, 1× non-essential amino acids and 0.05 mM 2-mercaptoethanol. LPS (10 ng ml−1) 

and anti-CD3ε monoclonal antibody (145-2C11, 1 μg ml−1) were used to supplement B and 

T lymphocyte cultures, respectively. Purified cells were grown in monocultures overnight 

before being directly co-cultured at 1:1 cell ratio. Hepatic macrophages were additionally 

grown in Transwell inserts. After 48 h, adherent cells were washed and collected for 

analysis.

RNA analysis

RNA from freshly perfused mouse liver or sorted liver macrophages was extracted using the 

Qiagen RNeasy Plus kit. Fragmentation, reverse transcription and cDNA library preparation 

with random hexamer primers were carried out using standard Illumina protocols. Pooled 

libraries were sequenced using the Illumina NovaSeq 6000. Sequenced reads were filtered 

to remove reads containing adapters, greater than 10% undetermined bases, or greater than 

50% of bases with a Q score less than or equal to 5. Transcript abundance estimates were 

generated using Salmon v1.2.1 and differentially expressed genes (log2[FC] > 0.58, Padj 

< 0.05) were identified using the R package DESeq2. Gene set enrichment analysis was 

carried out using GSEA v4.1.0 (Broad Institute). For sorted liver macrophages, gene sets in 

MSigDB C7 (filtered for macrophage-related signatures) and H (Hallmark) collections were 

analysed. For unsorted liver transcripts, gene sets in MSigDB C2 (filtered for liver-related 

signatures) and H collections were analysed, in addition to liver disease-specific gene sets 

extracted from published data39,40,41. P value < 0.05 and false discovery rate < 0.10 were 

taken to be significant.

Statistical analysis

We tested for the association of CHIP status with prevalent chronic liver disease using 

logistic regression, adjusting for age, sex, type 2 diabetes and smoking. Additional analyses 

were carried out after adjustment for alcohol consumption and body mass index. For 

incident analysis, we used Cox proportional hazards regression with adjustment for age, 

sex, type 2 diabetes and smoking. Further adjustment for alcohol consumption and body 

mass index was carried out as a sensitivity analysis. To aggregate the effect size of CHIP 

on liver disease across cohorts, inverse-variance-weighted fixed-effects meta-analysis was 

carried out. To test the association of CHIP status with liver imaging biomarkers, including 

liver fat (proton density fat fraction ≥ 5%) and liver inflammation and fibrosis (proton cT1 ≥ 

795 ms), we used logistic regression with adjustment for age and sex.
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To assess the causality of the association of CHIP status with chronic liver disease, 

we examined the association of genetic predisposition to CHIP with cirrhosis risk using 

Mendelian randomization. Mendelian randomization is a genetic method that assesses the 

causality between an exposure (CHIP) and outcome (chronic liver disease). We used MR-

RAPS analysis, which provides for control of the type 1 error rate when using subgenome-

wide significant genetic variants29. To increase statistical power to detect an effect, we 

used variants associated with CHIP status at a P value of less than 0.0001. Pruning was 

carried out to identify independent genetic variants using R2 < 0.01 before analysis. The 

GWAS for the exposure (CHIP) consisted of a GWAS of CHIP status in 52 studies in the 

TOPMed programme. Among 97,691 individuals, 4,229 cases and 93,462 controls were 

analysed. Single variant association for each variant with minor allele frequency > 0.1% and 

minor allele count > 20 was carried out with SAIGE. Models were adjusted for age, sex 

and ten principal components of ancestry. The genetic variants identified exhibited strong 

association with CHIP (F statistic = 156).

We tested the association of these variants with cirrhosis risk using summary statistics 

from a GWAS of 5,770 cirrhosis cases and 487,780 controls20. This GWAS analysed 

all-cause cirrhosis—defined as hospitalization or death due to ICD codes K70.2, K70.3, 

K70.4, K74.0, K74.1, K74.2, K74.6, K76.6 or I85. Logistic regression as implemented 

in PLINK was used to test the association of genetic variants with all-cause cirrhosis in 

seven cohorts. Inverse-variance-weighted meta-analysis was used to pool estimates across 

all seven cohorts. All analyses were adjusted for age, sex and five principal components 

of ancestry. Cohorts were of European ancestry. In sensitivity analyses, we also carried out 

MR analysis using MR-PRESSO42, MR-Egger43 and multivariate MR adjusted for smoking, 

body mass index and type 2 diabetes44,45,46. No outliers were detected in the MR-PRESSO 

analysis. Using the MR-PRESSO global test to test for overall horizontal pleiotropy42, no 

evidence of pleiotropy was observed (MR global test P value = 0.492). We conducted 

sensitivity analysis for potentially pleiotropic SNPs by specifically excluding any genetic 

variants that are associated with body mass index, waist-to-hip ratio adjusted for body mass 

index, type 2 diabetes, blood lipids, blood pressure, HbA1c level, C-reactive protein, current 

smoking and alcohol consumption44,45,46,47,48,49. To test the validity of the exchangeability 

assumption, we carried out MR analysis of CHIP against the potential confounders listed 

above (Supplementary Table 10). Reporting of MR results was carried out according to 

the MR-STROBE guidelines (Supplementary Table 13). Mendelian randomization analyses 

were conducted using the mr.raps R package and MR Base platform.

For mouse studies, pairwise comparisons were made using Student’s t-test or the Mann–

Whitney U-test as determined by normality and variance and adjusted for multiple 

comparisons. For comparisons between more than two groups, the chi-square test or two-

way analysis of variance with post hoc Tukey’s test was used. Statistical analyses were 

carried out in R version 3.5 or GraphPad Prism 8.3.1.
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Extended Data

Extended Data Fig. 1. CHIP ascertainment.
a, Proportion of CHIP by mutated gene among 11,783 individuals with CHIP. b, Prevalence 

of CHIP by age.
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Extended Data Fig. 2. Association of CHIP with chronic liver disease.
a, Association of CHIP with prevalent or incident chronic liver disease by variant allele 

fraction. b, Association of CHIP with chronic liver disease by mutated gene. c, Cumulative 

risk of chronic liver disease by clonal hematopoiesis status in the UK Biobank. d, 
Cumulative risk of chronic liver disease by clonal hematopoiesis status in the UK Biobank 

by age 80 years. Estimates derived using logistic regression with adjustment for age and 

sex in the UK Biobank, Framingham Heart Study and Atherosclerosis Risk in Communities 

study and pooled using inverse variance weighted fixed effects meta-analysis. Cumulative 

risk of chronic liver disease by age was modeled using Cox proportional hazards model with 

age as the underlying time variable and adjustment for sex. CHIP, clonal hematopoiesis of 

indeterminate potential; CI, 95% confidence interval; OR, odds ratio; VAF, variant allele 

fraction.
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Extended Data Fig. 3. Mendelian randomization analysis of CHIP association with chronic liver 
disease.
a, Effect of genetic variants against exposure (CHIP) and outcome (cirrhosis). 

Effect estimates are oriented to CHIP-increasing alleles. b, Phenome-wide mendelian 

randomization analysis of CHIP with 22 phenotypes. MR analysis was performed using 

MR Base platform. Estimates were derived using inverse variance weighted meta-analysis 

using 90 independent variants associated with CHIP with p < 5 x 10−5.
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Extended Data Fig. 4. Association of CHIP with serum biomarkers.
a, Association of CHIP with serum biomarkers in the UK Biobank. b, Association of CHIP 

with serum biomarkers in the UK Biobank excluding JAK2-mutant CHIP. c, Association 

of CHIP with serum biomarkers in the UK Biobank excluding TET2-mutant CHIP. ALP, 

alkaline phosphatase; ALT, alanine transaminase; AST, aspartate transaminase; CHIP, clonal 

hematopoiesis of indeterminate potential; CRP, C-reactive protein; GGT, gamma-glutamyl 

transferase; TBili, total bilirubin; WBC, white blood cell count. A P value of 0.006 after 

Bonferroni adjustment (0.05/9 = 0.006) was considered significant.
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Extended Data Fig. 5. Metabolic phenotype of Tet2−/− bone marrow transplanted mice fed 
CDAHFD.
Lethally irradiated C57BL/6J mice were transplanted with Tet2−/− (n = 30) or control 

vavCre+ (WT; n = 25) bone marrow cells. After hematopoietic reconstitution, mice were 

fed CDAHFD and body weight (a) and food intake (b) were measured over 30 days. Mice 

were sacrificed and terminal liver weight (c-d) and serum biomarkers (e) were measured. 

Control mice were transplanted with Tet2−/− (n = 6) or control vavCre+ (WT; n = 6) 

bone marrow cells and fed standard chow for the same duration. Data from one (a-d) or 

two independent experiments (e) are shown. AST, aspartate transaminase; ALT, alanine 

transaminase; TBILI, total bilirubin; ALB, albumin; TRIG, triglycerides; GLUC, glucose; 

CHOL, total cholesterol; HDL, high-density lipoprotein; LDL, low-density lipoprotein; 

NEFA, non-essential fatty acids.
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Extended Data Fig. 6. Liver and hematological parameters of Tet2−/− bone marrow transplanted 
mice.
a, Ldlr−/− mice were transplanted with Tet2−/− (n = 25) or control vavCre+ (WT; n = 20) 

bone marrow cells and fed Western diet for 10 weeks. b, B6.SJL mice were transplanted 

with Tet2−/− (n = 19) or control vavCre+ (WT; n = 12) bone marrow cells and fed 

CDAHFD for 11 weeks. c, C57BL/6J mice were transplanted with Tet2−/− (n = 12) or 

control vavCre+ (WT; n = 13) bone marrow cells and fed CDAHFD for 19 weeks. After 

the prescribed dietary periods, mice were sacrificed and terminal liver weight and peripheral 

blood chimerism and hematological parameters were measured. Data from one (c) or two 

independent experiments (a, b) are shown. WBC, white blood cell count; Hgb, hemoglobin; 

Hct, hematocrit; RBC, red blood cell count; Plt, platelet count.
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Extended Data Fig. 7. Steatohepatitis and liver fibrosis in Tet2−/− and Dnmt3a−/− transplanted 
mice.
a, Selected gene signatures enriched in bulk liver transcripts from Tet2−/− (n = 4) 

transplanted mice fed CDAHFD relative to control vavCre+ (WT; n = 4) transplanted mice. 

b, Histologic features of steatohepatitis in Ldlr−/− mice transplanted with Tet2−/− (n = 

27) and control vavCre+ (WT; n = 30) bone marrow and fed Western diet for 10 weeks 

were graded on a semiquantitative scale and aggregated into a NASH activity score (NAS) 

using CRN histologic scoring criteria. c-f, Graded histologic features included steatosis (c), 

inflammatory foci (d), hepatocyte ballooning (e, arrowhead) and apoptosis (f, arrow). g, 
Masson’s trichrome staining demonstrates absence of perivenular fibrosis in control and 

Tet2−/− transplanted mice. h, B6.SJL mice were transplanted with Dnmt3a−/− (n = 24) 

or control vavCre+ (WT; n = 20) bone marrow cells and fed CDAHFD for 11 weeks. 

Steatohepatitis was assessed histologically for steatosis, inflammation, and hepatocyte 

ballooning. Collagen fibrosis was measured by Masson’s trichrome staining. i, B6.SJL mice 

were transplanted with Tet2−/− (n = 20) or control vavCre+ (WT; n = 15) bone marrow cells 

and fed CDAHFD for 11 weeks, then reverted to standard chow for 10 days. Compared 

to control animals, Tet2−/− transplanted mice show similar resolution of liver fat but show 

persistently greater inflammation and more hepatocyte ballooning. Collagen fibrosis, as 

measured by Masson’s trichrome staining, was not significantly different. Data from one 
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(a) or two independent experiments (b, h, i) are shown. NES, normalized enrichment score; 

FDR, false discovery rate.

Extended Data Fig. 8. Fibrogenic response in hepatic stellate cells co-cultured with Tet2−/− 

hematopoietic cell populations.
Hepatic stellate cells were isolated from wild type livers (n = 5) and co-cultured with 

CD19+ B cells, CD3+ T cells, or CD11b+ hepatic macrophages isolated from Tet2−/− (n 
= 5) or control vavCre+ (WT; n = 5) mice for 2 days. Co-cultured hepatic stellate cells 

were harvested for RNA sequencing and selected differentially expressed genes (relative to 

hepatic stellate cell mono-culture) are shown (a). Gene expression profiles of co-cultured 

hepatic stellate cells were compared to published gene signatures of activated hepatic stellate 

cells from Zhang DY et al.48 (b) and Wang H et al.49 (c). Data from one experiment are 

shown. NES, normalized enrichment score; FWER, family-wise error rate.
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Extended Data Fig. 9. Donor-derived Kupffer cells and hepatic macrophages after bone marrow 
transplantation.
a, C57BL/6J mice were transplanted with CD45.1+Tet2−/− (n = 2) bone marrow cells and 

fed CDAHFD or standard chow. After 4 weeks, mice were sacrificed and dissociated liver 

cells were subjected to flow cytometric analysis of CD45.1 (donor) and CD45.2 (recipient) 

expression in F4/80hiCD11bmod Kupffer cells and CD11bhiF4/80mod hepatic macrophages. 

b, B6.SJL mice were transplanted with CD45.2+vavCre+ (n = 2) bone marrow cells and 

fed CDAHFD or standard chow for 19 weeks. Immunohistochemical stains demonstrate the 

presence of CD45.2+CD45.1−F4/80+ macrophages (arrowheads) in livers of bone marrow 

transplanted mice fed CDAHFD. Representative data from one mouse per condition are 

shown. c, Selected gene signatures enriched in sorted liver macrophages from Tet2−/− (n 
= 4) transplanted mice fed CDAHFD relative to control vavCre+ (WT; n = 4) transplanted 

mice. Data shown are from one experiment. NES, normalized enrichment score; FWER, 

family-wise error rate.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. CHIP is associated with chronic liver disease.
a, Association of CHIP with prevalent and incident chronic liver disease. WES, whole-

exome sequencing. b, Association of clonal haematopoiesis with subtypes of incident 

chronic liver disease in the UK Biobank. ALD, alcohol-related liver disease. c, Association 

of clonal haematopoiesis with biopsy-proven NASH in MGB Biobank. Estimates in 

prevalent analyses were derived using logistic regression, with adjustment for age, sex, type 

2 diabetes and smoking. d, Mendelian randomization estimates of the association of CHIP 

with chronic liver disease. Estimates were derived using MR-RAPS with 184 independent 

genetic variants with significance of P < 0.0001. Estimates in incident analyses were derived 

using Cox proportional hazards regression, with adjustment for age, sex, type 2 diabetes 

and smoking. MGB Biobank cohorts were matched for age, sex, type 2 diabetes, body mass 

index and smoking. NASH was defined as chronic liver disease among individuals with a 

body mass index of 30 kg m−2 or more who consumed 21 drinks or fewer per week for men 

and 14 drinks or fewer per week for women. Alcohol-related liver disease was defined as 

chronic liver disease among individuals who consumed 21 drinks or more per week for men 

or 14 drinks or more per week for women.
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Figure 2. CHIP is associated with steatohepatitis.
a, Prevalence of liver inflammation and hepatic steatosis on magnetic resonance imaging 

among 8,251 individuals in the UK Biobank. Liver inflammation and fibrosis was defined as 

a cT1 signal ≥ 795 ms. Fatty liver was defined as a proton density fat fraction ≥ 5%. Logistic 

regression, with adjustment for age and sex, was used to test the association between CHIP 

status and the presence of fatty liver and liver inflammation. b, Perspectum MultiScan cT1 

image (left) and proton density fat fraction (right) of a patient with CHIP. Image reproduced 

with permission from the UK Biobank. c–g, B6.SJL mice were transplanted with Tet2−/− 

(n = 20), Tet2−/−Nlrp3−/− (n = 10) or control vavCre+ (wild type (WT); n = 13) bone 

marrow cells and fed CDAHFD for 11 weeks. Steatohepatitis was graded using modified 

NASH CRN (Clinical Research Network) histologic criteria. Compared to vavCre+ and 

Tet2−/−Nlrp3−/− animals, Tet2−/−-transplanted mice show similar accumulation of liver fat 

(c), increased inflammation (d), macrophage crown structures (e, arrows) and hepatocyte 

ballooning (f, arrowhead), resulting in a higher aggregate NAS (g). h, B6.SJL mice were 

transplanted with Tet2−/− (n = 24) or vavCre+ wild-type control (n = 21) bone marrow 

cells and fed CDAHFD for 19 weeks. Collagen fibrosis, highlighted by Picrosirius red 

staining (left and middle panels), was quantified as the percentage of positive area using 
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ImageJ (right panel). Statistical analysis was performed using two-tailed unpaired t-test (a), 

chi-square test (g) and Mann–Whitney test (h). For a and h, error bars represent mean ± s.d.
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Figure 3. Proinflammatory signaling in CHIP.
a, Association of the IL6R germline mutation resulting in p.Asp358Ala with chronic liver 

disease in individuals with CHIP (variant allele fraction ≥ 10%) versus individuals without 

CHIP. b, Unsupervised hierarchical clustering of differentially regulated genes in sorted 

liver macrophages from B6.SJL mice transplanted with Tet2−/− (n = 4) or control vavCre+ 

(WT; n = 4) bone marrow cells and fed CDAHFD for 11 weeks. c, After 19 weeks of 

CDAHFD, Tet2−/−-transplanted (n = 12) or control vavCre+-transplanted (WT; n = 14) 

mice were bled and serum was obtained for cytokine measurements. Statistical analysis was 

performed using two-tailed unpaired t-test (IL-6, CXCL1) or Mann–Whitney test (CCL22, 

CCL17) with Bonferroni correction for multiple hypothesis testing. d, Bone marrow-derived 

macrophages from Tet2−/− (n = 6), Tet2−/−Nlrp3−/− (n = 4) or control vavCre+ (WT, n = 

7) mice were primed with low-dose lipopolysaccharide (LPS) for 2 h and stimulated with 

palmitic acid or cholesterol monohydrate crystals as indicated for 6 h. Statistical analysis 

was performed using two-way ANOVA. For c and d, individual measurements, mean and 

standard deviation from two independent experiments are shown.
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Table 1.
Baseline characteristics of participants in samples analysed.

Summary of cohort characteristics in studies used for analysis of CHIP and chronic liver disease. ARIC, 

Atherosclerosis Risk in Communities study; BMI, body-mass index; FHS, Framingham Heart Study; MGB, 

Mass General Brigham; n, number; s.d., standard deviation; WES, whole exome sequencing; NA, not 

available.

Characteristics FHS, n =
4,230

ARIC,
n = 7,414

UK Biobank
WES, n =
201,409

UK Biobank
Array, n =
239,316

MGB
Biobank, n =
1,482

Age (mean years (s.d.)) 61.1 (15.7) 57.4 (6.0) 56.5 (8.1) 57.0 (8.1) 53 (12)

Women (n (%)) 2,292 (54%) 4,358 (56%) 110,192 (55%) 127,600 (53%) 871 (59%)

BMI (mean kg/m2 (s.d.)) 27.8 (5.5) 27.7 (5.4) 27.4 (4.8) 27.4 (4.8) NA

Current smoking (n (%)) 610 (15%) 1,992 (26%) 13,358 (7%) 20,819 (9%) NA

Alcohol intake (mean drinks per week (s.d.)) 6.8 (16.6) 5.6 (8.8) 7.9 (9.8) 8.1 (10.3) 4.4 (7.4)

History of diabetes mellitus (n (%)) 166 (4%) 674 (9%) 9,676 (5%) 12,438 (5%) 95 (7%)

CHIP prevalence (n (%)) 369 (9%) 333 (4%) 11,783 (5%) 189 (0.1%) 90 (6%)

CHIP≥10% prevalence (n (%)) 342 (8%) 267 (4%) 6,188 (3%) 189 (0.1%) 51 (4%)
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