7 research outputs found

    Cost effectiveness analysis of using different monitoring modalities in treating severe traumatic brain injury (CESTBI) in neuro-ICU, HUSM, Kelantan

    Get PDF
    Introduction: There are two schools of thought in practicing neurotrauma monitoring for patients with severe traumatic brain injury (TBI); the application of the baseline neuro-monitoring (BNM) and the use of multiple modalities neurotrauma monitoring (M3) which is very expensive. The answer of which of the two monitoring systems is more eflicient and worth doing should be sought. Objective: To determine the cost effectiveness analysis between BNM and M3 monitoring modalities in the management of severe TBI. Methodology: Sixty-two patients with severe TBI admitted to Neuro-ICU, USM who fulfilled the predetermined criteria were selected using systematic random sampling. The macro and micro costing were performed on each of patient. Barthel Index was used to measure physical performance as an outcome six months after discharge. The analyses used were the Independent t- test, ANCOVA, and Repeated Measure ANOVA. Results: The mean total equipment cost of M3 was significantly higher at p = 0.049 (mean difference of RM23.74) after controlling other variables. The mean difference in Barthel Index after six months was significance between the two groups (p = 0.031), patients that were treated with M3 had higher score 163.7 (SD 30.03)J compared to those who were treated with BNM 146.83 (SD 30.36)]. However, the cost-effectiveness ratio of using M3 was significantly lowered (p=O.031) with a mean of RM476.29 was needed to increase a unit improvement in mean Barthel Index compared to RM629.12 if we used BNM. Conclusion: Although M3 is more costly, the outcome of patients treated with M3 was better than that of BNM. Therefore we can conclude that the used of multiple neuro-monitoring was more cost effective than the use of only baseline neuro-monitoring in treating severe traumatic brain injury

    The coming decade of digital brain research: a vision for neuroscience at the intersection of technology and computing

    Get PDF
    In recent years, brain research has indisputably entered a new epoch, driven by substantial methodological advances and digitally enabled data integration and modelling at multiple scales— from molecules to the whole brain. Major advances are emerging at the intersection of neuroscience with technology and computing. This new science of the brain combines high-quality research, data integration across multiple scales, a new culture of multidisciplinary large-scale collaboration and translation into applications. As pioneered in Europe’s Human Brain Project (HBP), a systematic approach will be essential for meeting the coming decade’s pressing medical and technological challenges. The aims of this paper are to: develop a concept for the coming decade of digital brain research, discuss this new concept with the research community at large, to identify points of convergence, and derive therefrom scientific common goals; provide a scientific framework for the current and future development of EBRAINS, a research infrastructure resulting from the HBP’s work; inform and engage stakeholders, funding organisations and research institutions regarding future digital brain research; identify and address the transformational potential of comprehensive brain models for artificial intelligence, including machine learning and deep learning; outline a collaborative approach that integrates reflection, dialogues and societal engagement on ethical and societal opportunities and challenges as part of future neuroscience research

    Harmonized-Multinational qEEG norms (HarMNqEEG)

    Get PDF
    This paper extends frequency domain quantitative electroencephalography (qEEG) methods pursuing higher sensitivity to detect Brain Developmental Disorders. Prior qEEG work lacked integration of cross-spectral information omitting important functional connectivity descriptors. Lack of geographical diversity precluded accounting for site-specific variance, increasing qEEG nuisance variance. We ameliorate these weaknesses. (i) Create lifespan Riemannian multinational qEEG norms for cross-spectral tensors. These norms result from the HarMNqEEG project fostered by the Global Brain Consortium. We calculate the norms with data from 9 countries, 12 devices, and 14 studies, including 1564 subjects. Instead of raw data, only anonymized metadata and EEG cross-spectral tensors were shared. After visual and automatic quality control, developmental equations for the mean and standard deviation of qEEG traditional and Riemannian DPs were calculated using additive mixed-effects models. We demonstrate qEEG "batch effects" and provide methods to calculate harmonized z-scores. (ii) We also show that harmonized Riemannian norms produce z-scores with increased diagnostic accuracy predicting brain dysfunction produced by malnutrition in the first year of life and detecting COVID induced brain dysfunction. (iii) We offer open code and data to calculate different individual z-scores from the HarMNqEEG dataset. These results contribute to developing bias-free, low-cost neuroimaging technologies applicable in various health settings

    The coming decade of digital brain research - A vision for neuroscience at the intersection of technology and computing

    No full text
    <p>Brain research has in recent years indisputably entered a new epoch, driven by substantial methodological advances and digitally enabled data integration and modeling at multiple scales – from molecules to the whole system. Major advances are emerging at the intersection of neuroscience with technology and computing. This new science of the brain integrates high-quality basic research, systematic data integration across multiple scales, a new culture of large-scale collaboration and translation into applications. A systematic approach, as pioneered in Europe's Human Brain Project (HBP), will be essential in meeting the pressing medical and technological challenges of the coming decade. The aims of this paper are</p><ul><li>To develop a concept for the coming decade of digital brain research</li><li>To discuss it with the research community at large, with the aim of identifying points of convergence and common goals</li><li>To provide a scientific framework for current and future development of EBRAINS</li><li>To inform and engage stakeholders, funding organizations and research institutions regarding future digital brain research</li><li>To identify and address key ethical and societal issues</li></ul><p>While we do not claim that there is a 'one size fits all' approach to addressing these aspects, we are convinced that discussions around the theme of digital brain research will help drive progress in the broader field of neuroscience.</p><p><strong>As the final version 5 has now been published, comments on this manuscript are now closed. We thank everyone who made a valuable contribution to this paper.</strong></p><p>This manuscript has been developed in a participatory process. The work has been initiated by the Science and Infrastructure Board of the Human Brain Project (HBP), and the entire research community was invited to contribute to shaping the vision by submitting comments. </p><p>All submitted comments were considered and discussed. The final decision on whether edits or additions was made to each version of the manuscript based on an individual comment was made by the Science and Infrastructure Board (SIB) of the Human Brain Project (HBP).</p><p><strong>Supporters of the paper</strong>: Pietro Avanzini, Marc Beyer, Maria Del Vecchio, Jitka Annen, Maurizio Mattia, Steven Laureys, Rosanne Edelenbosch, Rafael Yuste, Jean-Pierre Changeux, Linda Richards, Hye Weon Jessica Kim, Chrysoula Samara, Luis Miguel González de la Garza, Nikoleta Petalidou, Vasudha Kulkarni, Cesar David Rincon, Isabella O'Shea, Munira Tamim Electricwala, Bernd Carsten Stahl, Bahar Hazal Yalcinkaya, Meysam Hashemi, Carola Sales Carbonell, Marcel Carrère, Anthony Randal McIntosh, Hiba Sheheitli, Abolfazl Ziaeemehr, Martin Breyton, Giovanna Ramos Queda, Anirudh NIhalani Vattikonda, Gyorgy Buzsaki, George Ogoh, William Knight, Torbjørn V Ness, Michiel van der Vlag, Marcello Massimini, Thomas Nowontny, Alex Upton, Yaseen Jakhura, Ahmet Nihat Simsek, Michael Hopkins, Addolorata Marasco, Shamim Patel, Jakub Fil, Diego Molinari, Susana Bueno, Lia Domide, Cosimo Lupo, Mu-ming Poo, George Paxinos, Huifang Wang.</p&gt

    Global Survey of Outcomes of Neurocritical Care Patients: Analysis of the PRINCE Study Part 2

    No full text
    BACKGROUND: Neurocritical care is devoted to the care of critically ill patients with acute neurological or neurosurgical emergencies. There is limited information regarding epidemiological data, disease characteristics, variability of clinical care, and in-hospital mortality of neurocritically ill patients worldwide. We addressed these issues in the Point PRevalence In Neurocritical CarE (PRINCE) study, a prospective, cross-sectional, observational study. METHODS: We recruited patients from various intensive care units (ICUs) admitted on a pre-specified date, and the investigators recorded specific clinical care activities they performed on the subjects during their first 7 days of admission or discharge (whichever came first) from their ICUs and at hospital discharge. In this manuscript, we analyzed the final data set of the study that included patient admission characteristics, disease type and severity, ICU resources, ICU and hospital length of stay, and in-hospital mortality. We present descriptive statistics to summarize data from the case report form. We tested differences between geographically grouped data using parametric and nonparametric testing as appropriate. We used a multivariable logistic regression model to evaluate factors associated with in-hospital mortality. RESULTS: We analyzed data from 1545 patients admitted to 147 participating sites from 31 countries of which most were from North America (69%, N = 1063). Globally, there was variability in patient characteristics, admission diagnosis, ICU treatment team and resource allocation, and in-hospital mortality. Seventy-three percent of the participating centers were academic, and the most common admitting diagnosis was subarachnoid hemorrhage (13%). The majority of patients were male (59%), a half of whom had at least two comorbidities, and median Glasgow Coma Scale (GCS) of 13. Factors associated with in-hospital mortality included age (OR 1.03; 95% CI, 1.02 to 1.04); lower GCS (OR 1.20; 95% CI, 1.14 to 1.16 for every point reduction in GCS); pupillary reactivity (OR 1.8; 95% CI, 1.09 to 3.23 for bilateral unreactive pupils); admission source (emergency room versus direct admission [OR 2.2; 95% CI, 1.3 to 3.75]; admission from a general ward versus direct admission [OR 5.85; 95% CI, 2.75 to 12.45; and admission from another ICU versus direct admission [OR 3.34; 95% CI, 1.27 to 8.8]); and the absence of a dedicated neurocritical care unit (NCCU) (OR 1.7; 95% CI, 1.04 to 2.47). CONCLUSION: PRINCE is the first study to evaluate care patterns of neurocritical patients worldwide. The data suggest that there is a wide variability in clinical care resources and patient characteristics. Neurological severity of illness and the absence of a dedicated NCCU are independent predictors of in-patient mortality.status: publishe
    corecore