101 research outputs found

    Seed bank dynamics in five Panamanian forests

    Get PDF

    Seed size influence on germination responses to light and temperature of seven pioneer tree species from the Central Amazon

    Get PDF
    In Amazon secondary forests are dominated by pioneer species that typically produce large amounts of small and dormant seeds that are able to form a persistent soil seed bank. Seed dormancy in this group of species is overcome by environmental conditions found in open areas, such as high irradiation or alternating temperatures. Nevertheless, a variety of germination responses to environmental factors is known among pioneers; some of them may germinate in diffuse light or in darkness condition at constant temperature. Seed mass can be considered as one of the factors that promotes this variety. Regarding species with very small seeds, it seems that the trigger for germination is light and for larger seeds temperature alternation may be a more important stimulus. In this study we established a relationship between seed mass and germination response to light and alternating temperature for a group of seven woody pioneer species from the Amazon forest. We found that an increase in seed mass was followed by a decrease in the need for light and an increase in the tolerance to alternating temperatures. Understanding germination strategies may contribute with the knowledge of species coexistence in high diverse environments and also may assist those involved in forest management and restoration.Na Amazônia as florestas secundárias são dominadas por espécies pioneiras que, normalmente, produzem grandes quantidades de sementes pequenas, dormentes e capazes de formar bancos de sementes no solo. A dormência neste grupo de espécies é superada pelas condições ambientais de áreas abertas, como alta irradiação ou alternância de temperaturas. No entanto, uma variedade de respostas de germinação aos fatores ambientais é conhecida entre as pioneiras; algumas germinam em luz difusa ou no escuro sob temperatura constante. Um dos fatores promotores desta variedade é a massa das sementes. Parece que para as espécies com sementes muito pequenas, o estímulo para que ocorra germinação é a luz e, para sementes maiores, a alternância de temperatura pode ser um estímulo mais importante. Neste estudo, estabeleceu-se uma relação entre a massa das sementes e a resposta de germinação à luz e temperatura para sete espécies pioneiras arbóreas da floresta amazônica. Descobrimos que o aumento na massa da semente foi acompanhado por diminuição da necessidade por luz e aumento da tolerância à alternância de temperatura. Compreender estratégias de germinação pode contribuir para os conhecimentos sobre a coexistência de espécies em ambientes altamente diversos e também pode ajudar aos pesquisadores envolvidos no manejo e restauração florestal

    Evidence from Individual Inference for High-Dimensional Coexistence: Long-Term Experiments on Recruitment Response

    Get PDF
    Background: For competing species to coexist, individuals must compete more with others of the same species than with those of other species. Ecologists search for tradeoffs in how species might partition the environment. The negative correlations among competing species that would be indicative of tradeoffs are rarely observed. A recent analysis showed that evidence for partitioning the environment is available when responses are disaggregated to the individual scale, in terms of the covariance structure of responses to environmental variation. That study did not relate that variation to the variables to which individuals were responding. To understand how this pattern of variation is related to niche variables, we analyzed responses to canopy gaps, long viewed as a key variable responsible for species coexistence. Methodology/Principal Findings: A longitudinal intervention analysis of individual responses to experimental canopy gaps with 12 yr of pre-treatment and 8 yr post-treatment responses showed that species-level responses are positively correlated – species that grow fast on average in the understory also grow fast on average in response to gap formation. In other words, there is no tradeoff. However, the joint distribution of individual responses to understory and gap showed a negative correlation – species having individuals that respond most to gaps when previously growing slowly also have individuals that respond least to gaps when previously growing rapidly (e.g., Morus rubra), and vice versa (e.g., Quercus prinus). Conclusions/Significance: Because competition occurs at the individual scale, not the species scale, aggregated speciesleve

    Growth Strategies of Tropical Tree Species: Disentangling Light and Size Effects

    Get PDF
    An understanding of the drivers of tree growth at the species level is required to predict likely changes of carbon stocks and biodiversity when environmental conditions change. Especially in species-rich tropical forests, it is largely unknown how species differ in their response of growth to resource availability and individual size. We use a hierarchical Bayesian approach to quantify the impact of light availability and tree diameter on growth of 274 woody species in a 50-ha long-term forest census plot in Barro Colorado Island, Panama. Light reaching each individual tree was estimated from yearly vertical censuses of canopy density. The hierarchical Bayesian approach allowed accounting for different sources of error, such as negative growth observations, and including rare species correctly weighted by their abundance. All species grew faster at higher light. Exponents of a power function relating growth to light were mostly between 0 and 1. This indicates that nearly all species exhibit a decelerating increase of growth with light. In contrast, estimated growth rates at standardized conditions (5 cm dbh, 5% light) varied over a 9-fold range and reflect strong growth-strategy differentiation between the species. As a consequence, growth rankings of the species at low (2%) and high light (20%) were highly correlated. Rare species tended to grow faster and showed a greater sensitivity to light than abundant species. Overall, tree size was less important for growth than light and about half the species were predicted to grow faster in diameter when bigger or smaller, respectively. Together light availability and tree diameter only explained on average 12% of the variation in growth rates. Thus, other factors such as soil characteristics, herbivory, or pathogens may contribute considerably to shaping tree growth in the tropics

    Conservation and Diversity of Seed Associated Endophytes in Zea across Boundaries of Evolution, Ethnography and Ecology

    Get PDF
    Endophytes are non-pathogenic microbes living inside plants. We asked whether endophytic species were conserved in the agriculturally important plant genus Zea as it became domesticated from its wild ancestors (teosinte) to modern maize (corn) and moved from Mexico to Canada. Kernels from populations of four different teosintes and 10 different maize varieties were screened for endophytic bacteria by culturing, cloning and DNA fingerprinting using terminal restriction fragment length polymorphism (TRFLP) of 16S rDNA. Principle component analysis of TRFLP data showed that seed endophyte community composition varied in relation to plant host phylogeny. However, there was a core microbiota of endophytes that was conserved in Zea seeds across boundaries of evolution, ethnography and ecology. The majority of seed endophytes in the wild ancestor persist today in domesticated maize, though ancient selection against the hard fruitcase surrounding seeds may have altered the abundance of endophytes. Four TRFLP signals including two predicted to represent Clostridium and Paenibacillus species were conserved across all Zea genotypes, while culturing showed that Enterobacter, Methylobacteria, Pantoea and Pseudomonas species were widespread, with γ-proteobacteria being the prevalent class. Twenty-six different genera were cultured, and these were evaluated for their ability to stimulate plant growth, grow on nitrogen-free media, solubilize phosphate, sequester iron, secrete RNAse, antagonize pathogens, catabolize the precursor of ethylene, produce auxin and acetoin/butanediol. Of these traits, phosphate solubilization and production of acetoin/butanediol were the most commonly observed. An isolate from the giant Mexican landrace Mixteco, with 100% identity to Burkholderia phytofirmans, significantly promoted shoot potato biomass. GFP tagging and maize stem injection confirmed that several seed endophytes could spread systemically through the plant. One seed isolate, Enterobacter asburiae, was able to exit the root and colonize the rhizosphere. Conservation and diversity in Zea-microbe relationships are discussed in the context of ecology, crop domestication, selection and migration
    corecore