71 research outputs found
Considering the Case for Biodiversity Cycles: Reexamining the Evidence for Periodicity in the Fossil Record
Medvedev and Melott (2007) have suggested that periodicity in fossil
biodiversity may be induced by cosmic rays which vary as the Solar System
oscillates normal to the galactic disk. We re-examine the evidence for a 62
million year (Myr) periodicity in biodiversity throughout the Phanerozoic
history of animal life reported by Rohde & Mueller (2005), as well as related
questions of periodicity in origination and extinction. We find that the signal
is robust against variations in methods of analysis, and is based on
fluctuations in the Paleozoic and a substantial part of the Mesozoic.
Examination of origination and extinction is somewhat ambiguous, with results
depending upon procedure. Origination and extinction intensity as defined by RM
may be affected by an artifact at 27 Myr in the duration of stratigraphic
intervals. Nevertheless, when a procedure free of this artifact is implemented,
the 27 Myr periodicity appears in origination, suggesting that the artifact may
ultimately be based on a signal in the data. A 62 Myr feature appears in
extinction, when this same procedure is used. We conclude that evidence for a
periodicity at 62 Myr is robust, and evidence for periodicity at approximately
27 Myr is also present, albeit more ambiguous.Comment: Minor modifications to reflect final published versio
Unraveling the Phylogenetic Relationships of the Eccoptochilinae, an Enigmatic Array of Ordovician Cheirurid Trilobites
The Cheiruridae are a diverse group of trilobites and several subfamilies within the clade have been the focus of recent phylogenetic studies. This paper focuses on the relationships of one of those subfamilies, the Ordovician Eccoptochilinae. We analyze sixteen species from six genera within the traditionally defined group, using the pilekiid Anacheirurus frederici as an outgroup. To assess the monophyly of the Eccoptochilinae seven sphaerexochine species, Kawina arnoldi, Sphaerexochus arenosus, S. atacius, S. latifrons, S. mirus, S. parvus, and S. scabridus were included in the analysis as well. The results of this analysis show that the genus Eccoptochile represents a paraphyletic grade and species traditionally assigned to Parasphaerexochus and Skelipyx plot within Pseudosphaerexochus. Also, representative species of Sphaerexochinae plot within the traditionally defined Eccoptochilinae, suggesting Eccoptochilinae itself is paraphyletic. To resolve this, we propose all species of Pseudosphaerexochus be placed within Sphaerexochinae and Eccoptochilinae be restricted to a monotypic Eccoptochile clavigera.This research was supported by NSF DEB-0716162
Phylogenetic and Biogeographic Analysis of Sphaerexochine Trilobites
BACKGROUND: Sphaerexochinae is a speciose and widely distributed group of cheirurid trilobites. Their temporal range extends from the earliest Ordovician through the Silurian, and they survived the end Ordovician mass extinction event (the second largest mass extinction in Earth history). Prior to this study, the individual evolutionary relationships within the group had yet to be determined utilizing rigorous phylogenetic methods. Understanding these evolutionary relationships is important for producing a stable classification of the group, and will be useful in elucidating the effects the end Ordovician mass extinction had on the evolutionary and biogeographic history of the group. METHODOLOGY/PRINCIPAL FINDINGS: Cladistic parsimony analysis of cheirurid trilobites assigned to the subfamily Sphaerexochinae was conducted to evaluate phylogenetic patterns and produce a hypothesis of relationship for the group. This study utilized the program TNT, and the analysis included thirty-one taxa and thirty-nine characters. The results of this analysis were then used in a Lieberman-modified Brooks Parsimony Analysis to analyze biogeographic patterns during the Ordovician-Silurian. CONCLUSIONS/SIGNIFICANCE: The genus Sphaerexochus was found to be monophyletic, consisting of two smaller clades (one composed entirely of Ordovician species and another composed of Silurian and Ordovician species). By contrast, the genus Kawina was found to be paraphyletic. It is a basal grade that also contains taxa formerly assigned to Cydonocephalus. Phylogenetic patterns suggest Sphaerexochinae is a relatively distinctive trilobite clade because it appears to have been largely unaffected by the end Ordovician mass extinction. Finally, the biogeographic analysis yields two major conclusions about Sphaerexochus biogeography: Bohemia and Avalonia were close enough during the Silurian to exchange taxa; and during the Ordovician there was dispersal between Eastern Laurentia and the Yangtze block (South China) and between Eastern Laurentia and Avalonia
What is a hospital bed day worth? A contingent valuation study of hospital Chief Executive Officers
BACKGROUND: Decreasing hospital length of stay, and so freeing up hospital beds, represents an important cost saving which is often used in economic evaluations. The savings need to be accurately quantified in order to make optimal health care resource allocation decisions. Traditionally the accounting cost of a bed is used. We argue instead that the economic cost of a bed day is the better value for making resource decisions, and we describe our valuation method and estimations for costing this important resource. METHODS: We performed a contingent valuation using 37 Australian Chief Executive Officers’ (CEOs) willingness to pay (WTP) to release bed days in their hospitals, both generally and using specific cases. We provide a succinct thematic analysis from qualitative interviews post survey completion, which provide insight into the decision making process. RESULTS: On average CEOs are willing to pay a marginal rate of 436 for an Intensive Care Unit (ICU) bed day, with estimates of uncertainty being greater for ICU beds. These estimates are significantly lower (four times for ward beds and seven times for ICU beds) than the traditional accounting costs often used. Key themes to emerge from the interviews include the importance of national funding and targets, and their associated incentive structures, as well as the aversion to discuss bed days as an economic resource. CONCLUSIONS: This study highlights the importance for valuing bed days as an economic resource to inform cost effectiveness models and thus improve hospital decision making and resource allocation. Significantly under or over valuing the resource is very likely to result in sub-optimal decision making. We discuss the importance of recognising the opportunity costs of this resource and highlight areas for future research. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12913-017-2079-5) contains supplementary material, which is available to authorized users
Deletion of iRhom2 protects against diet-induced obesity by increasing thermogenesis
Objective: Obesity is the result of positive energy balance. It can be caused by excessive energy consumption but also by decreased energy dissipation, which occurs under several conditions including when the development or activation of brown adipose tissue (BAT) is impaired. Here we evaluated whether iRhom2, the essential cofactor for the Tumour Necrosis Factor (TNF) sheddase ADAM17/TACE, plays a role in the pathophysiology of metabolic syndrome.Methods: We challenged WT versus iRhom2 KO mice to positive energy balance by chronic exposure to a high fat diet and then compared their metabolic phenotypes. We also carried out ex vivo assays with primary and immortalized mouse brown adipocytes to establish the autonomy of the effect of loss of iRhom2 on thermogenesis and respiration.Results: Deletion of iRhom2 protected mice from weight gain, dyslipidemia, adipose tissue inflammation, and hepatic steatosis and improved insulin sensitivity when challenged by a high fat diet. Crucially, the loss of iRhom2 promotes thermogenesis via BAT activation and beige adipocyte recruitment, enabling iRhom2 KO mice to dissipate excess energy more efficiently than WT animals. This effect on enhanced thermogenesis is cell-autonomous in brown adipocytes as iRhom2 KOs exhibit elevated UCP1 levels and increased mitochondrial proton leak.Conclusion: Our data suggest that iRhom2 is a negative regulator of thermogenesis and plays a role in the control of adipose tissue homeostasis during metabolic disease. (C) 2019 The Authors. Published by Elsevier GmbH
MAVS-Mediated Apoptosis and Its Inhibition by Viral Proteins
BACKGROUND: Host responses to viral infection include both immune activation and programmed cell death. The mitochondrial antiviral signaling adaptor, MAVS (IPS-1, VISA or Cardif) is critical for host defenses to viral infection by inducing type-1 interferons (IFN-I), however its role in virus-induced apoptotic responses has not been elucidated. PRINCIPAL FINDINGS: We show that MAVS causes apoptosis independent of its function in initiating IFN-I production. MAVS-induced cell death requires mitochondrial localization, is caspase dependent, and displays hallmarks of apoptosis. Furthermore, MAVS(-/-) fibroblasts are resistant to Sendai virus-induced apoptosis. A functional screen identifies the hepatitis C virus NS3/4A and the Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) nonstructural protein (NSP15) as inhibitors of MAVS-induced apoptosis, possibly as a method of immune evasion. SIGNIFICANCE: This study describes a novel role for MAVS in controlling viral infections through the induction of apoptosis, and identifies viral proteins which inhibit this host response
The Origin and Initial Rise of Pelagic Cephalopods in the Ordovician
BACKGROUND: During the Ordovician the global diversity increased dramatically at family, genus and species levels. Partially the diversification is explained by an increased nutrient, and phytoplankton availability in the open water. Cephalopods are among the top predators of today's open oceans. Their Ordovician occurrences, diversity evolution and abundance pattern potentially provides information on the evolution of the pelagic food chain. METHODOLOGY/PRINCIPAL FINDINGS: We reconstructed the cephalopod departure from originally exclusively neritic habitats into the pelagic zone by the compilation of occurrence data in offshore paleoenvironments from the Paleobiology Database, and from own data, by evidence of the functional morphology, and the taphonomy of selected cephalopod faunas. The occurrence data show, that cephalopod associations in offshore depositional settings and black shales are characterized by a specific composition, often dominated by orthocerids and lituitids. The siphuncle and conch form of these cephalopods indicate a dominant lifestyle as pelagic, vertical migrants. The frequency distribution of conch sizes and the pattern of epibionts indicate an autochthonous origin of the majority of orthocerid and lituitid shells. The consistent concentration of these cephalopods in deep subtidal sediments, starting from the middle Tremadocian indicates the occupation of the pelagic zone early in the Early Ordovician and a subsequent diversification which peaked during the Darriwilian. CONCLUSIONS/SIGNIFICANCE: The exploitation of the pelagic realm started synchronously in several independent invertebrate clades during the latest Cambrian to Middle Ordovician. The initial rise and diversification of pelagic cephalopods during the Early and Middle Ordovician indicates the establishment of a pelagic food chain sustainable enough for the development of a diverse fauna of large predators. The earliest pelagic cephalopods were slowly swimming vertical migrants. The appearance and early diversification of pelagic cephalopods is interpreted as a consequence of the increased food availability in the open water since the latest Cambrian
Changes to the Fossil Record of Insects through Fifteen Years of Discovery
The first and last occurrences of hexapod families in the fossil record are compiled from publications up to end-2009. The major features of these data are compared with those of previous datasets (1993 and 1994). About a third of families (>400) are new to the fossil record since 1994, over half of the earlier, existing families have experienced changes in their known stratigraphic range and only about ten percent have unchanged ranges. Despite these significant additions to knowledge, the broad pattern of described richness through time remains similar, with described richness increasing steadily through geological history and a shift in dominant taxa, from Palaeoptera and Polyneoptera to Paraneoptera and Holometabola, after the Palaeozoic. However, after detrending, described richness is not well correlated with the earlier datasets, indicating significant changes in shorter-term patterns. There is reduced Palaeozoic richness, peaking at a different time, and a less pronounced Permian decline. A pronounced Triassic peak and decline is shown, and the plateau from the mid Early Cretaceous to the end of the period remains, albeit at substantially higher richness compared to earlier datasets. Origination and extinction rates are broadly similar to before, with a broad decline in both through time but episodic peaks, including end-Permian turnover. Origination more consistently exceeds extinction compared to previous datasets and exceptions are mainly in the Palaeozoic. These changes suggest that some inferences about causal mechanisms in insect macroevolution are likely to differ as well
The selection between apoptosis and necrosis is differentially regulated in hydrogen peroxide-treated and glutathione-depleted human promonocytic cells
10 páginas, 7 figuras -- PAGS nros. 889-898Treatment with 0.2 mM hydrogen peroxide (H2O2) or with 0.5 mM cisplatin caused caspase-9 and caspase-3 activation and death by apoptosis in U-937 human promonocytic cells. However, treatment with 2 mM H2O2, or incubation with the glutathione suppressor DL-buthionine-(S,R)-sulfoximine (BSO) prior to treatment with cisplatin, suppressed caspase activation and changed the mode of death to necrosis. Treatment with 2 mM H2O2 caused a great decrease in the intracellular ATP level, which was partially prevented by 3-aminobenzamide (3-ABA). Correspondingly, 3-ABA restored the activation of caspases and the execution of apoptosis. By contrast, BSO plus cisplatin did not decrease the ATP levels, and the generation of necrosis by this treatment was not affected by 3-ABA. On the other hand, while all apoptosis-inducing treatments and treatment with 2 mM H2O2 caused Bax translocation from the cytosol to mitochondria as well as cytochrome c release from mitochondria to the cytosol, treatment with BSO plus cisplatin did not. Treatment with cisplatin alone caused Bid cleavage, while BSO plus cisplatin as well as 0.2 and 2 mM H2O2 did not. Bcl-2 overexpression reduced the generation of necrosis by H2O2, but not by BSO plus cisplatin. These results indicate the existence of different apoptosis/necrosis regulatory mechanisms in promonocytic cells subjected to different forms of oxidative stressThis work was supported in part by Grant SAF-2001-1219 from the Plan Nacional de Investigacion Científica, Desarrollo e Investigación Tecnológica, Ministerio de Ciencia y Tecnología; by Grant 01/0946 from the Fondo de Investigación Sanitaria, Ministerio de Sanidad y Consumo; and by Grant 08.3/0011.3/2001 from the Comunidad Autónoma de Madrid, Spain, to PA; by the Associazione Italiana per la Ricerca sul Cancro (AIRC, Italy) to PB; and by the Program of Cooperation between the CSIC (Spain) and the CNR (Italy). AT and CF are recipients of predoctoral fellowships from the Ministerio de Ciencia y Tecnología, and PS of a predoctoral fellowship from the Ministerio de Educación, Cultura y Deporte, SpainPeer reviewe
- …
