172 research outputs found

    A Comparative Survey of the Frequency and Distribution of Polymorphism in the Genome of Xenopus tropicalis

    Get PDF
    Naturally occurring DNA sequence variation within a species underlies evolutionary adaptation and can give rise to phenotypic changes that provide novel insight into biological questions. This variation exists in laboratory populations just as in wild populations and, in addition to being a source of useful alleles for genetic studies, can impact efforts to identify induced mutations in sequence-based genetic screens. The Western clawed frog Xenopus tropicalis (X. tropicalis) has been adopted as a model system for studying the genetic control of embryonic development and a variety of other areas of research. Its diploid genome has been extensively sequenced and efforts are underway to isolate mutants by phenotype- and genotype-based approaches. Here, we describe a study of genetic polymorphism in laboratory strains of X. tropicalis. Polymorphism was detected in the coding and non-coding regions of developmental genes distributed widely across the genome. Laboratory strains exhibit unexpectedly high frequencies of genetic polymorphism, with alleles carrying a variety of synonymous and non-synonymous codon substitutions and nucleotide insertions/deletions. Inter-strain comparisons of polymorphism uncover a high proportion of shared alleles between Nigerian and Ivory Coast strains, in spite of their distinct geographical origins. These observations will likely influence the design of future sequence-based mutation screens, particularly those using DNA mismatch-based detection methods which can be disrupted by the presence of naturally occurring sequence variants. The existence of a significant reservoir of alleles also suggests that existing laboratory stocks may be a useful source of novel alleles for mapping and functional studies

    Reduction of the ATPase inhibitory factor 1 (IF1) leads to visual impairment in vertebrates

    Get PDF
    In vertebrates, mitochondria are tightly preserved energy producing organelles, which sustain nervous system development and function. The understanding of proteins that regulate their homoeostasis in complex animals is therefore critical and doing so via means of systemic analysis pivotal to inform pathophysiological conditions associated with mitochondrial deficiency. With the goal to decipher the role of the ATPase inhibitory factor 1 (IF1) in brain development, we employed the zebrafish as elected model reporting that the Atpif1a−/− zebrafish mutant, pinotage (pnttq209), which lacks one of the two IF1 paralogous, exhibits visual impairment alongside increased apoptotic bodies and neuroinflammation in both brain and retina. This associates with increased processing of the dynamin-like GTPase optic atrophy 1 (OPA1), whose ablation is a direct cause of inherited optic atrophy. Defects in vision associated with the processing of OPA1 are specular in Atpif1−/− mice thus confirming a regulatory axis, which interlinks IF1 and OPA1 in the definition of mitochondrial fitness and specialised brain functions. This study unveils a functional relay between IF1 and OPA1 in central nervous system besides representing an example of how the zebrafish model could be harnessed to infer the activity of mitochondrial proteins during development

    Consequences of Lineage-Specific Gene Loss on Functional Evolution of Surviving Paralogs: ALDH1A and Retinoic Acid Signaling in Vertebrate Genomes

    Get PDF
    Genome duplications increase genetic diversity and may facilitate the evolution of gene subfunctions. Little attention, however, has focused on the evolutionary impact of lineage-specific gene loss. Here, we show that identifying lineage-specific gene loss after genome duplication is important for understanding the evolution of gene subfunctions in surviving paralogs and for improving functional connectivity among human and model organism genomes. We examine the general principles of gene loss following duplication, coupled with expression analysis of the retinaldehyde dehydrogenase Aldh1a gene family during retinoic acid signaling in eye development as a case study. Humans have three ALDH1A genes, but teleosts have just one or two. We used comparative genomics and conserved syntenies to identify loss of ohnologs (paralogs derived from genome duplication) and to clarify uncertain phylogenies. Analysis showed that Aldh1a1 and Aldh1a2 form a clade that is sister to Aldh1a3-related genes. Genome comparisons showed secondarily loss of aldh1a1 in teleosts, revealing that Aldh1a1 is not a tetrapod innovation and that aldh1a3 was recently lost in medaka, making it the first known vertebrate with a single aldh1a gene. Interestingly, results revealed asymmetric distribution of surviving ohnologs between co-orthologous teleost chromosome segments, suggesting that local genome architecture can influence ohnolog survival. We propose a model that reconstructs the chromosomal history of the Aldh1a family in the ancestral vertebrate genome, coupled with the evolution of gene functions in surviving Aldh1a ohnologs after R1, R2, and R3 genome duplications. Results provide evidence for early subfunctionalization and late subfunction-partitioning and suggest a mechanistic model based on altered regulation leading to heterochronic gene expression to explain the acquisition or modification of subfunctions by surviving ohnologs that preserve unaltered ancestral developmental programs in the face of gene loss

    The Mych Gene Is Required for Neural Crest Survival during Zebrafish Development

    Get PDF
    Background: Amomg Myc family genes, c-Myc is known to have a role in neural crest specification in Xenopus and in craniofacial development in the mouse. There is no information on the function of other Myc genes in neural crest development, or about any developmental role: of zebrafish Myc genes. Principal Findings: We isolated the zebrafish mych (myc homologue) gene. Knockdown of mych leads to sever defects in craniofacial development and in certain other tissues including the eye. These phenotypes appear to be caused by cell death in the neural crest and in the eye field in the anterior brain. Significance: Mych is a novel factor required for neural crest cell survival in zebrafish

    Zebrafish Endzone Regulates Neural Crest-Derived Chromatophore Differentiation and Morphology

    Get PDF
    The development of neural crest-derived pigment cells has been studied extensively as a model for cellular differentiation, disease and environmental adaptation. Neural crest-derived chromatophores in the zebrafish (Danio rerio) consist of three types: melanophores, xanthophores and iridiphores. We have identified the zebrafish mutant endzone (enz), that was isolated in a screen for mutants with neural crest development phenotypes, based on an abnormal melanophore pattern. We have found that although wild-type numbers of chromatophore precursors are generated in the first day of development and migrate normally in enz mutants, the numbers of all three chromatophore cell types that ultimately develop are reduced. Further, differentiated melanophores and xanthophores subsequently lose dendricity, and iridiphores are reduced in size. We demonstrate that enz function is required cell autonomously by melanophores and that the enz locus is located on chromosome 7. In addition, zebrafish enz appears to selectively regulate chromatophore development within the neural crest lineage since all other major derivatives develop normally. Our results suggest that enz is required relatively late in the development of all three embryonic chromatophore types and is normally necessary for terminal differentiation and the maintenance of cell size and morphology. Thus, although developmental regulation of different chromatophore sublineages in zebrafish is in part genetically distinct, enz provides an example of a common regulator of neural crest-derived chromatophore differentiation and morphology

    Representativeness of microsatellite distributions in genomes, as revealed by 454 GS-FLX Titanium pyrosequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microsatellites are markers of choice in population genetics and genomics, as they provide useful insight into patterns and processes as diverse as genome evolutionary dynamics and demographic processes. The acquisition of microsatellites through multiplex-enriched libraries and 454 GS-FLX Titanium pyrosequencing is a promising new tool for the isolation of new markers in unknown genomes. This approach can also be used to evaluate the extent to which microsatellite-enriched libraries are representative of the genome from which they were isolated. In this study, we deciphered potential discrepancies in microsatellite content recovery for two reference genomes (<it>Apis mellifera </it>and <it>Danio rerio</it>), selected on the basis of their extreme heterogeneity in terms of the proportions and distributions of microsatellites on chromosomes.</p> <p>Results</p> <p>The <it>A. mellifera </it>genome, in particular, was found to be highly heterogeneous, due to extremely high rates of recombination, with hotspots, but the only bias consistently introduced into pyrosequenced multiplex-enriched libraries concerned sequence length, with the overrepresentation of sequences 160 to 320 bp in length. Other deviations from expected proportions or distributions of motifs on chromosomes were observed, but the significance and intensity of these deviations was mostly limited. Furthermore, no consistent adverse competition between multiplexed probes was observed during the motif enrichment phase.</p> <p>Conclusions</p> <p>This approach therefore appears to be a promising strategy for improving the development of microsatellites, as it introduces no major bias in terms of the proportions and distribution of microsatellites.</p

    Structural Relationships between Highly Conserved Elements and Genes in Vertebrate Genomes

    Get PDF
    Large numbers of sequence elements have been identified to be highly conserved among vertebrate genomes. These highly conserved elements (HCEs) are often located in or around genes that are involved in transcription regulation and early development. They have been shown to be involved in cis-regulatory activities through both in vivo and additional computational studies. We have investigated the structural relationships between such elements and genes in six vertebrate genomes human, mouse, rat, chicken, zebrafish and tetraodon and detected several thousand cases of conserved HCE-gene associations, and also cases of HCEs with no common target genes. A few examples underscore the potential significance of our findings about several individual genes. We found that the conserved association between HCE/HCEs and gene/genes are not restricted to elements by their absolute distance on the genome. Notably, long-range associations were identified and the molecular functions of the associated genes do not show any particular overrepresentation of the functional categories previously reported. HCEs in close proximity are found to be linked with different set of gene/genes. The results reflect the highly complex correlation between HCEs and their putative target genes

    From biomedicine to natural history research: EST resources for ambystomatid salamanders

    Get PDF
    BACKGROUND: Establishing genomic resources for closely related species will provide comparative insights that are crucial for understanding diversity and variability at multiple levels of biological organization. We developed ESTs for Mexican axolotl (Ambystoma mexicanum) and Eastern tiger salamander (A. tigrinum tigrinum), species with deep and diverse research histories. RESULTS: Approximately 40,000 quality cDNA sequences were isolated for these species from various tissues, including regenerating limb and tail. These sequences and an existing set of 16,030 cDNA sequences for A. mexicanum were processed to yield 35,413 and 20,599 high quality ESTs for A. mexicanum and A. t. tigrinum, respectively. Because the A. t. tigrinum ESTs were obtained primarily from a normalized library, an approximately equal number of contigs were obtained for each species, with 21,091 unique contigs identified overall. The 10,592 contigs that showed significant similarity to sequences from the human RefSeq database reflected a diverse array of molecular functions and biological processes, with many corresponding to genes expressed during spinal cord injury in rat and fin regeneration in zebrafish. To demonstrate the utility of these EST resources, we searched databases to identify probes for regeneration research, characterized intra- and interspecific nucleotide polymorphism, saturated a human – Ambystoma synteny group with marker loci, and extended PCR primer sets designed for A. mexicanum / A. t. tigrinum orthologues to a related tiger salamander species. CONCLUSIONS: Our study highlights the value of developing resources in traditional model systems where the likelihood of information transfer to multiple, closely related taxa is high, thus simultaneously enabling both laboratory and natural history research

    Genome Physical Mapping of Polyploids: A BIBAC Physical Map of Cultivated Tetraploid Cotton, Gossypium hirsutum L

    Get PDF
    Polyploids account for approximately 70% of flowering plants, including many field, horticulture and forage crops. Cottons are a world-leading fiber and important oilseed crop, and a model species for study of plant polyploidization, cellulose biosynthesis and cell wall biogenesis. This study has addressed the concerns of physical mapping of polyploids with BACs and/or BIBACs by constructing a physical map of the tetraploid cotton, Gossypium hirsutum L. The physical map consists of 3,450 BIBAC contigs with an N50 contig size of 863 kb, collectively spanning 2,244 Mb. We sorted the map contigs according to their origin of subgenome, showing that we assembled physical maps for the A- and D-subgenomes of the tetraploid cotton, separately. We also identified the BIBACs in the map minimal tilling path, which consists of 15,277 clones. Moreover, we have marked the physical map with nearly 10,000 BIBAC ends (BESs), making one BES in approximately 250 kb. This physical map provides a line of evidence and a strategy for physical mapping of polyploids, and a platform for advanced research of the tetraploid cotton genome, particularly fine mapping and cloning the cotton agronomic genes and QTLs, and sequencing and assembling the cotton genome using the modern next-generation sequencing technology
    corecore