288 research outputs found

    Anaerobic Carbon Monoxide Dehydrogenase Diversity in the Homoacetogenic Hindgut Microbial Communities of Lower Termites and the Wood Roach

    Get PDF
    Anaerobic carbon monoxide dehydrogenase (CODH) is a key enzyme in the Wood-Ljungdahl (acetyl-CoA) pathway for acetogenesis performed by homoacetogenic bacteria. Acetate generated by gut bacteria via the acetyl-CoA pathway provides considerable nutrition to wood-feeding dictyopteran insects making CODH important to the obligate mutualism occurring between termites and their hindgut microbiota. To investigate CODH diversity in insect gut communities, we developed the first degenerate primers designed to amplify cooS genes, which encode the catalytic (β) subunit of anaerobic CODH enzyme complexes. These primers target over 68 million combinations of potential forward and reverse cooS primer-binding sequences. We used the primers to identify cooS genes in bacterial isolates from the hindgut of a phylogenetically lower termite and to sample cooS diversity present in a variety of insect hindgut microbial communities including those of three phylogenetically-lower termites, Zootermopsis nevadensis, Reticulitermes hesperus, and Incisitermes minor, a wood-feeding cockroach, Cryptocercus punctulatus, and an omnivorous cockroach, Periplaneta americana. In total, we sequenced and analyzed 151 different cooS genes. These genes encode proteins that group within one of three highly divergent CODH phylogenetic clades. Each insect gut community contained CODH variants from all three of these clades. The patterns of CODH diversity in these communities likely reflect differences in enzyme or physiological function, and suggest that a diversity of microbial species participate in homoacetogenesis in these communities

    Genomic Characterization of Methanomicrobiales Reveals Three Classes of Methanogens

    Get PDF
    BACKGROUND:Methanomicrobiales is the least studied order of methanogens. While these organisms appear to be more closely related to the Methanosarcinales in ribosomal-based phylogenetic analyses, they are metabolically more similar to Class I methanogens. METHODOLOGY/PRINCIPAL FINDINGS:In order to improve our understanding of this lineage, we have completely sequenced the genomes of two members of this order, Methanocorpusculum labreanum Z and Methanoculleus marisnigri JR1, and compared them with the genome of a third, Methanospirillum hungatei JF-1. Similar to Class I methanogens, Methanomicrobiales use a partial reductive citric acid cycle for 2-oxoglutarate biosynthesis, and they have the Eha energy-converting hydrogenase. In common with Methanosarcinales, Methanomicrobiales possess the Ech hydrogenase and at least some of them may couple formylmethanofuran formation and heterodisulfide reduction to transmembrane ion gradients. Uniquely, M. labreanum and M. hungatei contain hydrogenases similar to the Pyrococcus furiosus Mbh hydrogenase, and all three Methanomicrobiales have anti-sigma factor and anti-anti-sigma factor regulatory proteins not found in other methanogens. Phylogenetic analysis based on seven core proteins of methanogenesis and cofactor biosynthesis places the Methanomicrobiales equidistant from Class I methanogens and Methanosarcinales. CONCLUSIONS/SIGNIFICANCE:Our results indicate that Methanomicrobiales, rather than being similar to Class I methanogens or Methanomicrobiales, share some features of both and have some unique properties. We find that there are three distinct classes of methanogens: the Class I methanogens, the Methanomicrobiales (Class II), and the Methanosarcinales (Class III)

    Growth-inhibitory and cell cycle-arresting properties of the rice bran constituent tricin in human-derived breast cancer cells in vitro and in nude mice in vivo

    Get PDF
    Tricin, a flavone found in rice bran, inhibits the growth of human-derived malignant MDA-MB-468 breast tumour cells at submicromolar concentrations. As part of the exploration of tricin as a potential cancer chemopreventive agent, we investigated the duration and cell cycle specificity of growth inhibition elicited by tricin in vitro and the effect of tricin on the development of MDA-MB-468 tumours grown in immune-compromised MF-1 mice in vivo. Preincubation of MDA-MB-468 cells with tricin (1-40 microM) for 72 h compromised cell growth after tricin removal, and such irreversibility was not observed in human breast-derived nonmalignant HBL-100 cells. Tricin (>/=5 microM) arrested MDA-MB-468 cells in the G2/M phase of the cell cycle without inducing apoptosis as adjudged by annexin V staining. In nude mice consumption of tricin with the diet (0.2%, w w(-1)) from 1 week prior to MDA-MB-468 cell implantation failed to impede tumour development. Steady-state levels of tricin in plasma, breast tumour tissue and intestinal mucosa, as measured by HPLC, were 0.13 microM and 0.11 and 63 nmol g(-1), respectively. Cells were exposed to tricin (0.11, 1.1 or 11 microM) in vitro for 72 h and then implanted into mice. The volume of tumours in animals bearing cells pre-exposed to 11 microM tricin was less than a third of that in mice with control cells, while tumours from cells incubated with 0.1 or 1.1 microM tricin were indistinguishable from controls. These results suggest that the potent breast tumour cell growth-inhibitory activity of tricin in vitro does not directly translate into activity in the nude mouse bearing the MDA MB-468 tumour. While the results do not support the notion that tricin is a promising candidate for breast cancer chemoprevention, its high levels in the gastrointestinal tract after dietary intake render exploration of its ability to prevent colorectal carcinogenesis propitious

    Gefitinib (IRESSA) sensitive lung cancer cell lines show phosphorylation of Akt without ligand stimulation

    Get PDF
    BACKGROUND: Phase III trials evaluating the efficacy of gefitinib (IRESSA) in non-small cell lung cancer (NSCLC) lend support to the need for improved patient selection in terms of gefitinib use. Mutation of the epidermal growth factor receptor (EGFR) gene is reported to be associated with clinical responsiveness to gefitinib. However, gefitinib-sensitive and prolonged stable-disease-defined tumors without EGFR gene mutation have also been reported. METHODS: To identify other key factors involved in gefitinib sensitivity, we analyzed the protein expression of molecules within the EGFR family, PI3K-Akt and Ras/MEK/Erk pathways and examined the sensitivity to gefitinib using the MTT cell proliferation assay in 23 lung cancer cell lines. RESULTS: We identified one highly sensitive cell line (PC9), eight cell lines displaying intermediate-sensitivity, and 14 resistant cell lines. Only PC9 and PC14 (intermediate-sensitivity) displayed an EGFR gene mutation including amplification. Eight out of the nine cell lines showing sensitivity had Akt phosphorylation without ligand stimulation, while only three out of the 14 resistant lines displayed this characteristic (P = 0.0059). Furthermore, the ratio of phosphor-Akt/total Akt in sensitive cells was higher than that observed in resistant cells (P = 0.0016). Akt phosphorylation was partially inhibited by gefitinib in all sensitive cell lines. CONCLUSION: These results suggest that Akt phosphorylation without ligand stimulation may play a key signaling role in gefitinib sensitivity, especially intermediate-sensitivity. In addition, expression analyses of the EGFR family, EGFR gene mutation, and FISH (fluorescence in situ hybridization) analyses showed that the phosphorylated state of EGFR and Akt might be a useful clinical marker of Akt activation without ligand stimulation, in addition to EGFR gene mutation and amplification, particularly in adenocarcinomas

    The Genome Characteristics and Predicted Function of Methyl-Group Oxidation Pathway in the Obligate Aceticlastic Methanogens, Methanosaeta spp

    Get PDF
    In this work, we report the complete genome sequence of an obligate aceticlastic methanogen, Methanosaeta harundinacea 6Ac. Genome comparison indicated that the three cultured Methanosaeta spp., M. thermophila, M. concilii and M. harundinacea 6Ac, each carry an entire suite of genes encoding the proteins involved in the methyl-group oxidation pathway, a pathway whose function is not well documented in the obligately aceticlastic methanogens. Phylogenetic analysis showed that the methyl-group oxidation-involving proteins, Fwd, Mtd, Mch, and Mer from Methanosaeta strains cluster with the methylotrophic methanogens, and were not closely related to those from the hydrogenotrophic methanogens. Quantitative PCR detected the expression of all genes for this pathway, albeit ten times lower than the genes for aceticlastic methanogenesis in strain 6Ac. Western blots also revealed the expression of fwd and mch, genes involved in methyl-group oxidation. Moreover, 13C-labeling experiments suggested that the Methanosaeta strains might use the pathway as a methyl oxidation shunt during the aceticlastic metabolism. Because the mch mutants of Methanosarcina barkeri or M. acetivorans failed to grow on acetate, we suggest that Methanosaeta may use methyl-group oxidation pathway to generate reducing equivalents, possibly for biomass synthesis. An fpo operon, which encodes an electron transport complex for the reduction of CoM-CoB heterodisulfide, was found in the three genomes of the Methanosaeta strains. However, an incomplete protein complex lacking the FpoF subunit was predicted, as the gene for this protein was absent. Thus, F420H2 was predicted not to serve as the electron donor. In addition, two gene clusters encoding the two types of heterodisulfide reductase (Hdr), hdrABC, and hdrED, respectively, were found in the three Methanosaeta genomes. Quantitative PCR determined that the expression of hdrED was about ten times higher than hdrABC, suggesting that hdrED plays a major role in aceticlastic methanogenesis

    Recommendations for the design of laboratory studies on non-target arthropods for risk assessment of genetically engineered plants

    Get PDF
    This paper provides recommendations on experimental design for early-tier laboratory studies used in risk assessments to evaluate potential adverse impacts of arthropod-resistant genetically engineered (GE) plants on non-target arthropods (NTAs). While we rely heavily on the currently used proteins from Bacillus thuringiensis (Bt) in this discussion, the concepts apply to other arthropod-active proteins. A risk may exist if the newly acquired trait of the GE plant has adverse effects on NTAs when they are exposed to the arthropod-active protein. Typically, the risk assessment follows a tiered approach that starts with laboratory studies under worst-case exposure conditions; such studies have a high ability to detect adverse effects on non-target species. Clear guidance on how such data are produced in laboratory studies assists the product developers and risk assessors. The studies should be reproducible and test clearly defined risk hypotheses. These properties contribute to the robustness of, and confidence in, environmental risk assessments for GE plants. Data from NTA studies, collected during the analysis phase of an environmental risk assessment, are critical to the outcome of the assessment and ultimately the decision taken by regulatory authorities on the release of a GE plant. Confidence in the results of early-tier laboratory studies is a precondition for the acceptance of data across regulatory jurisdictions and should encourage agencies to share useful information and thus avoid redundant testing

    Variable effect of co-infection on the HIV infectivity: Within-host dynamics and epidemiological significance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies have implicated viral characteristics in accounting for the variation in the HIV set-point viral load (spVL) observed among individuals. These studies have suggested that the spVL might be a heritable factor. The spVL, however, is not in an absolute equilibrium state; it is frequently perturbed by immune activations generated by co-infections, resulting in a significant amplification of the HIV viral load (VL). Here, we postulated that if the HIV replication capacity were an important determinant of the spVL, it would also determine the effect of co-infection on the VL. Then, we hypothesized that viral factors contribute to the variation of the effect of co-infection and introduce variation among individuals.</p> <p>Methods</p> <p>We developed a within-host deterministic differential equation model to describe the dynamics of HIV and malaria infections, and evaluated the effect of variations in the viral replicative capacity on the VL burden generated by co-infection. These variations were then evaluated at population level by implementing a between-host model in which the relationship between VL and the probability of HIV transmission per sexual contact was used as the within-host and between-host interface.</p> <p>Results</p> <p>Our within-host results indicated that the combination of parameters generating low spVL were unable to produce a substantial increase in the VL in response to co-infection. Conversely, larger spVL were associated with substantially larger increments in the VL. In accordance, the between-host model indicated that co-infection had a negligible impact in populations where the virus had low replicative capacity, reflected in low spVL. Similarly, the impact of co-infection increased as the spVL of the population increased.</p> <p>Conclusion</p> <p>Our results indicated that variations in the viral replicative capacity would influence the effect of co-infection on the VL. Therefore, viral factors could play an important role driving several virus-related processes such as the increment of the VL induced by co-infections. These results raise the possibility that biological differences could alter the effect of co-infection and underscore the importance of identifying these factors for the implementation of control interventions focused on co-infection.</p

    Ligation Tunes Protein Reactivity in an Ancient Haemoglobin: Kinetic Evidence for an Allosteric Mechanism in Methanosarcina acetivorans Protoglobin

    Get PDF
    Protoglobin from Methanosarcina acetivorans (MaPgb) is a dimeric globin with peculiar structural properties such as a completely buried haem and two orthogonal tunnels connecting the distal cavity to the solvent. CO binding to and dissociation from MaPgb occur through a biphasic kinetics. We show that the heterogenous kinetics arises from binding to (and dissociation from) two tertiary conformations in ligation-dependent equilibrium. Ligation favours the species with high binding rate (and low dissociation rate). The equilibrium is shifted towards the species with low binding (and high dissociation) rates for the unliganded molecules. A quantitative model is proposed to describe the observed carbonylation kinetics
    corecore