1,385 research outputs found

    Combining ε-Near-Zero Behavior and Stopped Light Energy Bands for Ultra-Low Reflection and Reduced Dispersion of Slow Light.

    Get PDF
    We investigate media which exhibits epsilon-near-zero (ENZ) behavior while simultaneously sustaining stopped light energy bands which contain multiple points of zero group velocity (ZGV). This allows the merging of state-of-the-art phenomena that was hitherto attainable in media that demonstrated these traits separately. Specifically, we demonstrate the existence of Ferrell-Berreman (FB) modes within frequency bands bounded by points of ZGV with the goal to improve the coupling efficiency and localization of light in the media. The FB mode is formed within a double layer, thin-film stack where at subwavelength thicknesses the structure exhibits a very low reflection due to ENZ behavior. In addition, the structure is engineered to promote a flattened frequency dispersion with a negative permittivity able to induce multiple points of ZGV. For proof-of-concept, we propose an oxide-semiconductor-oxide-insulator stack and discuss the useful optical properties that arise from combining both phenomena. A transfer matrix (TM) treatment is used to derive the reflectivity profile and dispersion curves. Results show the ability to reduce reflection below 0.05% in accordance with recent experimental data while simultaneously exciting a polariton mode exhibiting both reduced group velocity and group velocity dispersion (GVD)

    Phylogenetic analysis of the tenascin gene family: evidence of origin early in the chordate lineage

    Get PDF
    BACKGROUND: Tenascins are a family of glycoproteins found primarily in the extracellular matrix of embryos where they help to regulate cell proliferation, adhesion and migration. In order to learn more about their origins and relationships to each other, as well as to clarify the nomenclature used to describe them, the tenascin genes of the urochordate Ciona intestinalis, the pufferfish Tetraodon nigroviridis and Takifugu rubripes and the frog Xenopus tropicalis were identified and their gene organization and predicted protein products compared with the previously characterized tenascins of amniotes. RESULTS: A single tenascin gene was identified in the genome of C. intestinalis that encodes a polypeptide with domain features common to all vertebrate tenascins. Both pufferfish genomes encode five tenascin genes: two tenascin-C paralogs, a tenascin-R with domain organization identical to mammalian and avian tenascin-R, a small tenascin-X with previously undescribed GK repeats, and a tenascin-W. Four tenascin genes corresponding to tenascin-C, tenascin-R, tenascin-X and tenascin-W were also identified in the X. tropicalis genome. Multiple sequence alignment reveals that differences in the size of tenascin-W from various vertebrate classes can be explained by duplications of specific fibronectin type III domains. The duplicated domains are encoded on single exons and contain putative integrin-binding motifs. A phylogenetic tree based on the predicted amino acid sequences of the fibrinogen-related domains demonstrates that tenascin-C and tenascin-R are the most closely related vertebrate tenascins, with the most conserved repeat and domain organization. Taking all lines of evidence together, the data show that the tenascins referred to as tenascin-Y and tenascin-N are actually members of the tenascin-X and tenascin-W gene families, respectively. CONCLUSION: The presence of a tenascin gene in urochordates but not other invertebrate phyla suggests that tenascins may be specific to chordates. Later genomic duplication events led to the appearance of four family members in vertebrates: tenascin-C, tenascin-R, tenascin-W and tenascin-X

    Correlation functions quantify super-resolution images and estimate apparent clustering due to over-counting

    Get PDF
    We present an analytical method to quantify clustering in super-resolution localization images of static surfaces in two dimensions. The method also describes how over-counting of labeled molecules contributes to apparent self-clustering and how the effective lateral resolution of an image can be determined. This treatment applies to clustering of proteins and lipids in membranes, where there is significant interest in using super-resolution localization techniques to probe membrane heterogeneity. When images are quantified using pair correlation functions, the magnitude of apparent clustering due to over-counting will vary inversely with the surface density of labeled molecules and does not depend on the number of times an average molecule is counted. Over-counting does not yield apparent co-clustering in double label experiments when pair cross-correlation functions are measured. We apply our analytical method to quantify the distribution of the IgE receptor (Fc{\epsilon}RI) on the plasma membranes of chemically fixed RBL-2H3 mast cells from images acquired using stochastic optical reconstruction microscopy (STORM) and scanning electron microscopy (SEM). We find that apparent clustering of labeled IgE bound to Fc{\epsilon}RI detected with both methods arises from over-counting of individual complexes. Thus our results indicate that these receptors are randomly distributed within the resolution and sensitivity limits of these experiments.Comment: 22 pages, 5 figure

    The genome and transcriptome of Trichormus sp NMC-1: insights into adaptation to extreme environments on the Qinghai-Tibet Plateau

    Get PDF
    The Qinghai-Tibet Plateau (QTP) has the highest biodiversity for an extreme environment worldwide, and provides an ideal natural laboratory to study adaptive evolution. In this study, we generated a draft genome sequence of cyanobacteria Trichormus sp. NMC-1 in the QTP and performed whole transcriptome sequencing under low temperature to investigate the genetic mechanism by which T. sp. NMC-1 adapted to the specific environment. Its genome sequence was 5.9 Mb with a G+C content of 39.2% and encompassed a total of 5362 CDS. A phylogenomic tree indicated that this strain belongs to the Trichormus and Anabaena cluster. Genome comparison between T. sp. NMC-1 and six relatives showed that functionally unknown genes occupied a much higher proportion (28.12%) of the T. sp. NMC-1 genome. In addition, functions of specific, significant positively selected, expanded orthogroups, and differentially expressed genes involved in signal transduction, cell wall/membrane biogenesis, secondary metabolite biosynthesis, and energy production and conversion were analyzed to elucidate specific adaptation traits. Further analyses showed that the CheY-like genes, extracellular polysaccharide and mycosporine-like amino acids might play major roles in adaptation to harsh environments. Our findings indicate that sophisticated genetic mechanisms are involved in cyanobacterial adaptation to the extreme environment of the QTP

    Vortices in polariton OPO superfluids

    Get PDF
    This chapter reviews the occurrence of quantised vortices in polariton fluids, primarily when polaritons are driven in the optical parametric oscillator (OPO) regime. We first review the OPO physics, together with both its analytical and numerical modelling, the latter being necessary for the description of finite size systems. Pattern formation is typical in systems driven away from equilibrium. Similarly, we find that uniform OPO solutions can be unstable to the spontaneous formation of quantised vortices. However, metastable vortices can only be injected externally into an otherwise stable symmetric state, and their persistence is due to the OPO superfluid properties. We discuss how the currents charactering an OPO play a crucial role in the occurrence and dynamics of both metastable and spontaneous vortices.Comment: 40 pages, 16 figure

    Adherence with statins in a real-life setting is better when associated cardiovascular risk factors increase: a cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While the factors for poor adherence for treatment with statins have been highlighted, the impact of their combination on adherence is not clear.</p> <p>Aims</p> <p>To estimate adherence for statins and whether it differs according to the number of cardiovascular risk factors.</p> <p>Methods</p> <p>A cohort study was conducted using data from the main French national health insurance system reimbursement database. Newly treated patients with statins between September 1 and December 31, 2004 were included. Patients were followed up 15 months. The cohort was split into three groups according to their number of additional cardiovascular risk factors that included age and gender, diabetes mellitus and cardiovascular disease (using co-medications as a <it>proxy</it>). Adherence was assessed for each group by using four parameters: <it>(i) </it>proportion of days covered by statins, <it>(ii) </it>regularity of the treatment over time, <it>(iii) </it>persistence, and <it>(iv) </it>the refill delay.</p> <p>Results</p> <p>16,397 newly treated patients were identified. Of these statin users, 21.7% did not have additional cardiovascular risk factors. Thirty-one percent had two cardiovascular risk factors and 47% had at least three risk factors. All the parameters showed a sub-optimal adherence whatever the group: days covered ranged from 56% to 72%, regularity ranged from 23% to 33% and persistence ranged from 44% to 59%, but adherence was better for those with a higher number of cardiovascular risk factors.</p> <p>Conclusions</p> <p>The results confirm that long-term drug treatments are a difficult challenge, particularly in patients at lower risk and invite to the development of therapeutic education.</p

    Microarray Analysis of the Effect of Streptococcus equi subsp. zooepidemicus M-Like Protein in Infecting Porcine Pulmonary Alveolar Macrophage

    Get PDF
    Streptococcus equi subsp. zooepidemicus (S. zooepidemicus), which belongs to Lancefield group C streptococci, is an important pathogen of domesticated species, causing septicemia, meningitis and mammitis. M-like protein (SzP) is an important virulence factor of S. zooepidemicus and contributes to bacterial infection and antiphagocytosis. To increase our knowledge of the mechanism of SzP in infection, we profiled the response of porcine pulmonary alveolar macrophage (PAM) to infection with S. zooepidemicus ATCC35246 wild strain (WD) and SzP-knockout strain (KO) using the Roche NimbleGen Porcine Genome Expression Array. We found SzP contributed to differential expression of 446 genes, with upregulation of 134 genes and downregulation of 312 genes. Gene Ontology category and KEGG pathway were analyzed for relationships among differentially expressed genes. These genes were represented in a variety of functional categories, including genes involved in immune response, regulation of chemokine production, signal transduction and regulation of apoptosis. The reliability of the data obtained from the microarray was verified by performing quantitative real-time PCR on 12 representative genes. The data will contribute to understanding of SzP mediated mechanisms of S. zooepidemicus pathogenesis
    corecore