985 research outputs found

    Strongly anisotropic media: the THz perspectives of left-handed materials

    Full text link
    We demonstrate that non-magnetic (μ≡1\mu \equiv 1) left-handed materials can be effectively used for waveguide imaging systems. We also propose a specific THz realization of the non-magnetic left-handed material based on homogeneous, naturally-occurring media

    Broadband tunable THz absorption with singular graphene metasurfaces

    Get PDF
    By exploiting singular spatial modulations of the graphene conductivity, we design a broadband, tunable THz absorber whose efficiency approaches the theoretical upper bound for a wide absorption band with a fractional bandwidth of 185%. Strong field enhancement is exhibited by the modes of this extended structure, which is able to excite a wealth of high-order surface plasmons, enabling deeply subwavelength focusing of incident THz radiation. Previous studies have shown that the conductivity can be modulated at GHz frequencies, which might lead to the development of efficient high-speed broadband switching by an atomically thin layer

    The asymmetric lossy near-perfect lens

    Get PDF
    We extend the ideas of the perfect lens recently proposed [J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)] to an alternative structure. We show that a slab of a medium with negative refractive index bounded by media of different positive refractive index also amplifies evanescent waves and can act as a near-perfect lens. We examine the role of the surface states in the amplification of the evanescent waves. The image resolution obtained by this asymmetric lens is more robust against the effects of absorption in the lens. In particular, we study the case of a slab of silver, which has a negative dielectric constant, with air on one side and other media such as glass or GaAs on the other side as an ‘asymmetric’ lossy near-perfect lens for p-polarized waves. It is found that retardation has an adverse effect on the imaging due to the positive magnetic permeability of silver, but we conclude that subwavelength image resolution is possible in spite of it

    Fresnel drag in space-time-modulated metamaterials

    Get PDF
    A moving medium drags light along with it as measured by Fizeau and explained by Einstein's theory of special relativity. Here we show that the same effect can be obtained in a situation where there is no physical motion of the medium. Modulations of both the permittivity and permeability, phased in space and time in the form of travelling waves, are the basis of our model. Space-time metamaterials are represented by effective bianisotropic parameters, which can in turn be mapped to a moving homogeneous medium. Hence these metamaterials mimic a relativistic effect without the need for any actual material motion. We discuss how both the permittivity and permeability need to be modulated in order to achieve these effects, and we present an equivalent transmission line model

    Transformation-Optics Description of Nonlocal Effects in Plasmonic Nanostructures

    Get PDF
    We develop an insightful transformation-optics approach to investigate the impact that nonlocality has on the optical properties of plasmonic nanostructures. The light-harvesting performance of a dimer of touching nanowires is studied by using the hydrodynamical Drude model, which reveals nonlocal resonances not predicted by previous local calculations. Our method clarifies the interplay between radiative and nonlocal effects in this nanoparticle configuration, which enables us to elucidate the optimum size that maximizes its absorption and field enhancement capabilitiesThis work was supported by the ESF plasmonbionanosense program, the Leverhulme Trust, and the Engineering and Physical Sciences Research Council (EPSRC

    Publisher Correction: An Archimedes’ screw for light

    Get PDF

    Transformation optics approach to singular metasurfaces

    Get PDF
    Surface plasmons dominate the optical response of metal surfaces, and their nature is controlled by surface geometry. Here we study metasurfaces containing singularities in the form of sharp edges and characterized by three quantum numbers despite the two-dimensional nature of the surface. We explore the nature of the plasmonic excitations, their ability to generate large concentrations of optical energy, and the transition from the discrete excitation spectrum of a nonsingular surface to the continuous spectrum of a singular metasurface

    Computing one-dimensional metasurfaces

    Get PDF
    We show that complex periodic metasurfaces can be simply represented by conformal transformations from the flat surface of a slab of material to a periodic grating leading to a methodology for computing their properties. Matrix equations are solved to give accurate solutions of Maxwell's equations with detailed derivations given in the Supplemental Material
    • …
    corecore