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University of Lisbon, Avenida Rovisco Pais 1,1049-001 Lisboa, Portugal

2Condensed Matter Theory Group, The Blackett Laboratory, Imperial College, SW7 2AZ, London, UK
3Department of Mathematics, Imperial College London, London SW7 2AZ, UK

4Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
5Condensed Matter Theory Group, The Blackett Laboratory, Imperial College, SW72AZ, London, UK

(Dated: August 19, 2019)

A moving medium drags light along with it as measured by Fizeau and explained by Einstein’s
theory of special relativity. Here we show that the same effect can be obtained in a situation where
there is no physical motion of the medium. Modulations of both the permittivity and permeability,
phased in space and time in the form of travelling waves, are the basis of our model. Space-time
metamaterials are represented by effective bianisotropic parameters, which can in turn be mapped
to a moving homogeneous medium. Hence these metamaterials mimic a relativistic effect without
the need for any actual material motion. We discuss how both the permittivity and permeability
need to be modulated in order to achieve these effects, and we present an equivalent transmission
line model.

I. INTRODUCTION

In 1818 Fresnel produced the aether drag hypothesis:
a moving fluid appears to ‘drag’ light along so that light
travelling in opposite directions to the fluid flow would
have different velocities [1]. His extra velocity was related
to but not equal to the velocity of the fluid. Although
Fresnel’s derivation was flawed, Fizeau in 1851 measured
the drag effect and confirmed Fresnel’s formula [2]. A cor-
rect explanation followed in the wake of Einstein’s theory
of relativity, of which the aether drag experiment is one
of the corner stones [3].

While it may seem that physical movement of the fluid
is an essential part of aether drag [4, 5], here we come to
the surprising conclusion that a time dependent system
involving no physical movement of a medium can also
produce a drag effect. We calculate the shifted disper-
sion surface, and show that the system can be represented
as a bianisotropic metamaterial (see Fig. 1), whose mag-
netoelectric coupling vanishes when either the dielectric
or the magnetic modulation is switched off. Finally we
propose a simple experiment which would demonstrate
our results.

We consider a metamaterial whose permittivity and
permeability are modulated in space and time following
a travelling-wave form,

ε(x, t) = εm[1 + 2αe cos(gx− Ωt)] (1)

µ(x, t) = µm[1 + 2αm cos(gx− Ωt)] (2)

where g and Ω are the spatial and temporal frequencies,
αe,m are the electric and magnetic modulation strengths,
and εm and µm are the background permittivity and per-
meability of the medium. The profile moves with a phase
velocity of cg = Ω/g but we emphasize that the medium
itself does not move: as a consequence the phase veloc-
ity can take any value between zero and infinity with-
out violating special relativity. In addition, we note that
we limit ourselves to situations where both ε and µ are

FIG. 1. Fresnel drag in space-time modulated metama-
terials. (a) A wave propagates in a medium with space-
time travelling-wave modulated permittivity and permeabil-
ity. The wave-vectors k and ky are along the direction of
the space-time grating and orthogonal to it, respectively. (b)
Sketch of the low frequency dispersion surface in the (k, ky)
plane. The isofrequency contours are ellipses centered at a
finite value of k, reflecting a Fresnel drag effect along the
modulation direction. (c) In the long wavelength limit the
space-time modulated medium is mapped into a magneto-
electric medium with anisotropic effective permittivity ε̂eff,
permeability µ̂eff and magnetoelectric coupling ζ̂eff parame-
ters. (d) Equivalent moving medium interpretation: uniaxial
medium with anisotropic effective permittivity ε̂′eff and per-
meability µ̂′eff medium moving with velocity vD.

greater than 1 so that a dispersionless approximation
holds. We shall concern ourselves with low-frequency,
long-wavelength excitations, enabling the medium to be
represented as a metamaterial with effective medium pa-
rameters which we calculate. Importantly, the drift ve-
locity appearing in space-time metamaterials differs from
both the modulation phase velocity and the conventional
Fresnel-Einstein result, and it can even oppose the mod-
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ulation phase velocity, when this is higher than the speed
of light cm in the unmodulated medium.

Modulation of the electric permittivity in space and
time has attracted much attention, as it gives rise to
a plethora of exotic effects ranging from frequency-
momentum transitions [6, 7] to compression and ampli-
fication of electromagnetic signals [8–14] and even non-
Hermitian and topological phenomena [15–19]. The di-
rectionality of space-time modulations such as travelling-
wave modulations breaks time-reversal symmetry, which
is reflected in non-reciprocal band diagrams [4]. The
breaking of reciprocity has been exploited in the real-
ization of photonic isolators and circulators without the
need of external static magnetic biasing [20–22]. Re-
cently, it was shown that in-phase modulations of the
permittivity and the permeability with the same strength
results in the closing of the high-frequency band gaps, at
the same time as keeping the non-reciprocal character of
these systems [23]. Here we further show that this non-
reciprocity is in fact accompanied by a Fresnel drag and
we present an effective medium model that illuminates
its origin.

This paper is structured as follows. We start by pre-
senting the effective medium theory of space-time meta-
materials in Section II. We derive an analytical expres-
sion for the dispersion relation of waves in space-time
modulated media, and in Section III we discuss the dis-
persion surfaces in detail, showing how they reveal a Fres-
nel drag. Next, in Section IV, we map the space-time
metamaterial into a static bianisotropic material and de-
termine the effective medium parameters. In Section V
we present an equivalent moving medium and give an
interpretation of the Fresnel drag in space-time metama-
terials. Finally, we present a transmission line model in
Section VII and close the paper with conclusions in Sec-
tion VIII.

II. EFFECTIVE MEDIUM THEORY OF
SPACE-TIME METAMATERIALS

Maxwell’s equations in space-time modulated media,

∇×E = −∂B
∂t

= − ∂

∂t
[µ(x, t)µ0H] , (3)

∇×H =
∂D

∂t
=

∂

∂t
[ε(x, t)ε0E] , (4)

can be solved by taking a Bloch-Floquet ansatz [8],

E =
∑
n

Ene
i(k+ng)x+ikyy−i(ω+nΩ)t, (5)

H =
∑
n

Hne
i(k+ng)x+ikyy−i(ω+nΩ)t, (6)

with wavevectors k and ky as defined in Fig. 1. Assuming
an s-polarized wave without loss of generality, this pro-
cedure leads to a system of equations for the Ez and Hy

components of the electromagnetic fields. An eigenvalue

equation can be written as,

k

[
E
H

]
=

[
MEE MEH

MHE MHH

] [
E
H

]
, (7)

where E and H now stand for column vectors of the
Bloch-Floquet amplitudes of Ez and Hy, respectively.
The block matrices in the above equation depend on ω
and satisfy MEE = MHH and their expressions are given
in Appendix A.

It is useful to rewrite the eigenvalue equations in the
basis of forward and backward propagating waves as fol-
lows,

k

[
E + H
E−H

]
=

[
M++ M+−

−M+− M−−

] [
E + H
E−H

]
. (8)

Here,

M++ = MEE +
1

2

(
MEH + MHE

)
, (9)

M+− = −1

2

(
MEH −MHE

)
, (10)

M−− = MEE − 1

2

(
MEH + MHE

)
. (11)

Solving Eq. (8) yields the dispersion relation of the sys-
tem, k(ω).

In the long wavelength limit, the dispersion relation
can be written analytically by considering only three
neighbouring modes in the eigenvalue equation and ap-
proximating ω � Ω, k � g. This gives,

β2ω2 = κ2k2
y + (k − δω)

2
, (12)

where

β2 = c−2
m

(
1 + α2

e

2Ω2

c2mg
2 − Ω2

)(
1 + α2

m

2Ω2

c2mg
2 − Ω2

)
,(13)

κ2 = 1 + α2
m

2Ω2

c2mg
2 − Ω2

, (14)

δ = αeαm
2gΩ

c2mg
2 − Ω2

, (15)

and c2m = 1/εmµm. Hence the dispersion surfaces are
approximately circles of radius ωβ and whose center is
displaced from the origin along the k axis by δω. This
produces an asymmetry with respect to the k = 0 axis,
since the dispersion surfaces are displaced along the di-
rection of the modulation, as shown in Fig. 2 and as will
be discussed below in detail.

III. FRESNEL DRAG

Here we interpret the displacement of the dispersion
surface shown above as an aether drag, which is well
known to affect light propagating through moving me-
dia [24]. In the conventional Fresnel drag effect, mov-
ing matter drags light, imparting an extra speed to it.
Measured by Fizeau in 1851, Einstein noticed that it is
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FIG. 2. Fresnel drag in space-time ε-and-µ modulated meta-
materials with αe = αm = 0.2. The iso-frequency contours
in the (k, ky) plane are shown for (a) subluminal (g > Ω),
and (b) superluminal (Ω > g) modulations. Note the change
in radius compared to the dispersion in unmodulated media
(gray circles), and the displacement along the k axis. In the
subluminal case, the space-time modulation drags the waves
in the direction opposite to its phase velocity (the effective
drift velocity, vD, sketched in red, is anti-parallel to the mod-
ulation phase velocity, cg, sketched in black), while the drift
velocity flips sign (vD parallel to cg) upon a superluminal
modulation cg > cm. Note the displacement of the centers of
the contours, which are plotted with dots of the same colour
as the corresponding contour. The group velocity direction is
given by the normal to these dispersion surfaces.

a relativistic effect, and that the speed of light in the
medium can be calculated from Lorentz’s velocity for-

mula. While it may seem that moving matter is needed
to produce a Fresnel drag, our results show that it can
also emerge in the presence of space-time modulations,
where the modulation profile appears to be moving at
a certain speed despite the absence of moving matter.
This surprising result can be understood from our effec-
tive medium theory. In fact, as we will show in Section
V, the space-time modulated metamaterial can be equiv-
alently represented by a moving medium, which explains
the light-dragging effect. Interestingly, the effective drift
is present as long as δ 6= 0, i.e. αe ·αm 6= 0 and g ·Ω 6= 0.
In other words, the Fresnel drag in space-time metama-
terials emerges when both the permittivity and perme-
ability are modulated, and when the modulations have
non-zero spatial and temporal frequencies.

The isofrequency contours given by Eq. (12) are shown
in Fig. 2 for two examples of space-time metamaterials:
with subluminal (top) and superluminal (bottom) modu-
lation speeds. The modulation strength is chosen in both
cases as αe = αm = 0.2 such that the permittivity and
permeability are equally modulated. For comparison, we
also show the isofrequency contours of unmodulated me-
dia (ω2/c2m = k2 + k2

y, gray lines). It can be seen how
in the presence of the modulation, the circular contours
change shape, and their center, which is plotted as a dot
of the same color as the corresponding contour, gets dis-
placed along the k axis. This shows the Fresnel drag in
space-time metamaterials. Interestingly, when the mod-
ulation speed is subluminal, the isofrequency contours
are displaced in the direction of the modulation’s phase
velocity (see top panel). On the other hand, when the
modulation is superluminal, the contours are displaced in
the direction opposite to the modulation’s phase veloc-
ity. In order words, given a space-time variation of ε and
µ, the direction of the Fresnel drag can be switched by
changing between subluminal and superluminal modula-
tions. Remarkably, this implies that the direction of the
Fresnel drag velocity is anti-parallel to the phase velocity
of the modulation in the subluminal case, and parallel to
it for the superluminal case. This seemingly counterin-
tuitive fact will be fully justified below.

In addition, the extent of the Fresnel effect in these me-
dia depends on the magnitude of the modulation speed.
It increases as cg increases from cg = 0 in the sublu-
minal regime, and as cg decreases from cg → ∞ in the
superluminal regime. As the luminal modulation regime
cg → cm is approached, however, strong interaction be-
tween multiple bands results in an unstable regime dom-
inated by intraband photonic transitions [8, 14], which
spoils the separation of length scales needed for long-
wavelength homogenisation.

IV. EFFECTIVE BIANISOTROPIC
PARAMETERS AND NON-RECIPROCITY

Next we derive the effective medium parameters of the
space-time metamaterial. We start by noting that the
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dispersion relation of waves in the space-time modulated
medium, Eq. (12), is of the form of the dispersion of
waves in a bianisotropic medium with uniaxial ε and µ,

ε =

 εx 0 0
0 ε 0
0 0 ε

 ; µ =

 µx 0 0
0 µ 0
0 0 µ

 , (16)

and magnetoelectric coupling,

ξ = ζT =

 0 0 0
0 0 +ξ
0 −ξ 0

 . (17)

For s-polarized waves we have in this case,

µµ0εε0ω
2 =

µ

µx
k2
y + (k − ξω)

2
. (18)

By comparing to Eq. (12) we can identify a set of effec-
tive medium parameters for the space-time modulated
metamaterial,

εx = µx = 1 (19)

ε = 1 + α2
e

2Ω2

c2mg
2 − Ω2

(20)

µ = 1 + α2
m

2Ω2

c2mg
2 − Ω2

(21)

ξ = αeαm
2gΩ

c2mg
2 − Ω2

. (22)

This shows that the modulated medium can be repre-
sented by an effective bianisotropic material. Interest-
ingly, the magnetoelectric coupling vanishes if the mod-
ulation is only spatial (Ω = 0) or only temporal (g = 0),
or if only one of the electromagnetic parameters is mod-
ulated, i.e. αe · αm = 0. We also note in passing that
space-time metamaterials with only ε or µ modulations
are mapped to uniaxial media (without any magnetoelec-
tric coupling).

The magnitude of ξ is presented in Fig. 3, as a func-
tion of the electric and magnetic modulation strengths.
When changing from a subluminal (left) to a superlumi-
nal (right) modulation speed, the magnetoelectric cou-
pling changes sign, in agreement with the reverse direc-
tions obtained for the Fresnel drag. In addition, we can
conclude from this plot that a phase difference of π be-
tween the ε and µ modulations also reverses the direction
of the aether drag with respect to in-phase modulations,
since ξ changes sign when sign(αe · αm) < 0.

In agreement with the effective bianisotropic param-
eters, the dispersion surfaces shown in Fig. 2 represent
non-reciprocal dispersion relations, a result of the time-
reversal symmetry breaking induced by the modulation.
From Eq. (12) we can explicitly write dispersion relations
for forward and backward propagating waves,

k± = δω ±
√
β2ω2 − κ2k2

y (23)

FIG. 3. Non-reciprocity map in the αe, αm parameter space
for subluminal (left) and superluminal gratings (right). The
colour map shows effective magnetoelectric coupling, ξ, which
is equal to δ and which also gives the difference in the inverse
of phase velocities between forward and backward propagat-
ing waves, ∆ = (k+ − |k−|)/ω = 2δ. It is seen that it is
necessary to modulate both parameters in order to achieve
non-reciprocity in the long wavelength limit.

Clearly, when δ 6= 0 ( ξ 6= 0) the two branches are asym-
metric with respect to k = 0, that is, the system is non-
reciprocal when both αe and αm are non-zero. For waves
travelling in the direction of the modulation, ky = 0, it is
easy to see that the difference between the wavevectors of
forward and backward waves at a given frequency is given
by ∆ = 2δ = 2ξ. Hence, we can interpret Fig. 3 as a map
of the strength of non-reciprocity. From this we confirm
that a non-reciprocal response requires both permittivity
and permeability modulations, and that for a fixed total
modulation strength, α2

e + α2
m = α2, non-reciprocity is

maximized by αe = αm.

V. EQUIVALENT MOVING MEDIUM

The link between moving media and bianisotropic ef-
fective parameters has been shown in the past [25, 26].
Hence, since the space-time modulated medium can be
represented by effective bianisotropic parameters, it can
also be linked to an equivalent moving medium. Below
we derive the speed of the equivalent moving medium.

Consider a moving uniaxial medium with parameters,
ε̂′ = diag(ε′x, ε

′, ε′), µ̂′ = diag(µ′x, µ
′, µ′), moving along

the x axis with speed v. Lorentz transformations tell us
that in the moving frame the permittivity and perme-
ability change as [24],

εx = ε′x, ε = ε′
1− v2/c2m

1− ε′µ′v2/c2m
(24)

µx = µ′x, µ = µ′
1− v2/c2m

1− ε′µ′v2/c2m
. (25)

Also, the electric and magnetic fields in the moving frame
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FIG. 4. Dispersion relations for ky = 0 and ky = 0.15, for subluminal (a) and superluminal (b) metamaterials. The top panels
show how ε and µ travelling-wave modulations yield non-reciprocal dispersion. The permittivity and permeability modulations
are set equal, αe = αm = 0.2. The bottom panels show how when only one of the parameters is modulated with the same
strength as before (αe = 0.2 or αm = 0.2) and the other is kept constant (αm = 0 or αe = 0), the system is reciprocal. The
dots represent numerical results and the dashed lines show the effective medium approximation. The red lines represent the
light lines

are coupled through magnetoelectric tensors,

ξ = ζT =

 0 0 0
0 0 +ξ
0 −ξ 0

 , (26)

where

ξ =
v

cm

ε′µ′ − 1

ε′µ′ − v2/c2m
. (27)

By mapping the tensors (24-26) to the set of effective
bianisotropic parameters in Eqs. (19-22), we determine,

vD ≈ −ξc2mε′µ′ ≈ −α2 2c2mgΩ

c2mg
2 − Ω2

, (28)

and

ε′ = µ′ ≈ ε

1− v2/c2m
≈ 1 + α2 2Ω2

c2mg
2 − Ω2

, (29)

where we have restricted ourselves to the case where
ε = µ, i.e., αe = αm, for simplicity. The velocity vD
is the drag velocity that light experiences in the space-
time metamaterial. This justifies our interpretation of
the isofrequency contours in Fig. 2 as an aether drag.

It is clear from Eq. (28) that when the modula-
tion is subluminal (g > Ω), vD < 0, such that the ef-
fective medium moves in the opposite direction to the

phase velocity of the modulation. Hence, forward prop-
agating modes slow down in the presence of sublumi-
nal space-time modulations, and backward propagating
modes speed up. On the other hand, for superluminal
modulations (g < Ω), vD > 0, such that the drag veloc-
ity points in the same direction as the modulation’s phase
velocity. In this case, forward waves speed up and back-
ward waves slow down. We remark here that there are
two effects at work in the space-time modulated meta-
material. In addition to the Fresnel drag, there is an
increase/reduction in the effective permittivity and per-
meability for subluminal/superluminal media, as can be
seen in Eq. (29). Hence, the slowing down or speeding
up of the waves is in relation to waves propagating in the
medium with reduced/increased effective ε or µ, rather
than with respect to cm.

Importantly, relativity imposes that the permittivity
and permeability of a moving medium change at the same
pace, see (24-26), as electric and magnetic effects are in-
timately linked to each other in relativity. Hence, the
mapping to a moving medium can be done only in the
case of space-time modulations of both ε and µ, whereas
the moving medium interpretation is not exact if either
material parameter is not modulated. This is a funda-
mental difference between systems where one between
electric and magnetic properties is modulated in space
and time, and systems which feature both modulations
simultaneously, and explains why the aether drag and
non-reciprocity disappear for modulations of only ε or µ.
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VI. NON-RECIPROCAL DISPERSION
RELATIONS

We now discuss in detail the effective medium theory
presented in Section II and validate our analytical ex-
pressions against numerical results.

The non-reciprocal dispersion relations given by Eq.
(23) are shown in Fig. 4 for a choice of non-zero electric
and magnetic modulation amplitudes αe = αm = 0.2
(top panels, solid green lines). Numerical results ob-
tained from Eq. (7) are also plotted with dots, validating
our effective medium theory. For waves propagating in
the direction of the modulation (ky = 0), the dispersion
relations are linear, k± = (δ ± β)ω, as can be seen in
the plot. In fact, when αe = αm, the eigenvalue equa-
tion 8 becomes block-diagonal because MEH = MHE

and M+− = M−+ = 0, reflecting the fact that forward
and backward waves do not interact in this case. Indeed
this periodic system, being impedance-matched to free
space at all positions x and times t, has zero band gaps
at higher frequencies and momenta, as discussed in Ref.
[23]. However, despite the fact that forward and back-
ward waves do not interact with each other, the mod-
ulation acts on each of them, yielding a non-reciprocal
response. The speed of forward and backward waves is
in fact different, and, according to Eq. (23), it is given
respectively by

v+ =
ω

k+
= cm

(
1 + 2α2 cg

cm − cg

)−1

, (30)

v− =
ω

k−
= −cm

(
1− 2α2 cg

cm + cg

)−1

. (31)

It is also clear from the above equations that for sub-
luminal grating speeds (cg < cm), forward waves propa-
gating through the space-time modulated medium speed
up and backward waves slow down, in agreement with a
negative Fresnel drag velocity. In particular, v+ < cm
and |v−| > cm, such that the branch at k > 0 lies be-
low the light line for the unmodulated material, and the
branch at k < 0 lies above it, as can be seen in the top
panel (a). For the case of superluminal grating speeds
(cg > cm), the speed of forward waves increases and that
of backward waves decreases, in agreement with a pos-
itive Fresnel drag velocity. We remark here that while
both velocities increase with respect to waves propagat-
ing in the absence of modulation (v+ > cm, |v−| > cm,
both branches lie above the light line), the Fresnel drag
in fact acts with respect to a medium with reduced effec-
tive permittivity and permeability (as given by Eq. (29)).
In the superluminal case the phase velocity of waves in
such medium is in fact reduced by a large amount, ∼ Ω2,
and the reciprocity breaking term is not strong enough to
move the backward propagating branch to the opposite
side of the light line. Hence, while the drag acts in the
same direction for both sets of waves, both branches lie
above the light line of unmodulated media [top panel,
(b)]. These different phase velocities for forward and

backward modes are consistent with the results presented
in Fig. 3, where ∆/2 = (v+

g )−1 − (v−g )−1 = δ is plotted.

On the other hand, if either the permittivity or the
permeability are kept constant (αe/m = 0.2, αm/e = 0),
the reciprocity-breaking term δ = 0, and the disper-
sion relations are fully reciprocal in the long wavelength
limit, as shown in the lower panels. In this case, and for
subluminal modulations, the forward/backward wave de-
creases/increases in speed with respect to cm, and the dis-
persion relations lie below the light lines, and conversely
for superluminal modulations, for which both branches
lie above the light lines. The phase velocities are given by
β−1 in this case, whose deviation from the unmodulated
system is quantified by terms ∼ Ω2/(c2mg

2 − Ω2). This
explains why the effect is more pronounced for superlu-
minal (b) than subluminal modulations (a), and why for
superluminal both branches remain above the light line
with electric and magnetic modulations.

Finally, for off-normal incidence, ky 6= 0, the dispersion
presents a cut-off and exhibits the Fresnel drag by tilting
towards the positive k direction for subluminal modu-
lations and towards the negative one for superluminal
modulations, in agreement with Fig. 2.

VII. TRANSMISSION LINE MODEL

We propose a realization of Fresnel drag in a trans-
mission line comprising the discrete elements shown in
Fig 5a, which can be modelled as detailed in Appendix
B. Varactors are used, so that a strong pump signal
can modulate their capacitance in time, with appropri-
ate phasing from one varactor to another. Varactors are
available with a typical capacitance of 100 pF. Both the
inductive and capacitive elements must be modulated in
order to see the drag effect: ferrite-core inductors, with
inductance of the order of 1µH are commercially avail-
able. The ferrite core has a non-linear response, enabling
the pump beam to vary the inductance. A powerful high
frequency pump signal is sent through the system to pro-
duce the required modulation of the elements. Simul-
taneously, a low frequency probe tests the effect of the
modulation, as illustrated in Fig. 5b. For the values of
inductance and capacitance quoted, the cut-off frequency
of the transmission line would be approximately 6 MHz.

One suggestion for detecting the drag is to make an
analogy with the electrons confined to a loop. In the ab-
sence of a magnetic field, non zero angular momentum
states are twofold degenerate, as dictated by time rever-
sal symmetry. A magnetic field breaks this symmetry
and splits the formerly degenerate states. Fig. 5c shows
the configuration. The loop quantizes the states, and
the space-time modulation of the elements produces an
effective gauge field for photons [27], resulting in a split-
ting of opposite-propagating modes, in analogy with the
Zeeman splitting in atomic physics [22, 28].
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FIG. 5. (a) The capacitor in a conventional transmission line
is replaced by a varactor, whose capacitance varies with the
voltage across it. The inductors are also assumed to vary
with the bias current. (b): Schematic dispersion showing the
pump and probe frequencies. (c) Discrete elements combined
into a loop to demonstrate the presence of a photo-magnetic
field.

VIII. CONCLUSIONS

Space-time modulated systems can, in the low fre-
quency limit, be represented as bianisotropic metama-
terials, or alternatively as uniaxial metamaterials in mo-
tion relative to the observer’s reference frame. In the
latter case we claim that this is an instance of Fresnel’s
aether drag hypothesis but with the interesting twist that
modulations of the system do not displace the physical
medium itself and the motion is apparent rather than
real. Further the velocity of the modulations, cg, is only
indirectly related to the drag velocity, vD, whose sign and
magnitude can be changed by the size and relative phase
of the electric and magnetic modulation amplitudes. Our
system presents a rich variety of phenomena with param-
eters that are highly tuneable.

We mention in passing that we expect realisations in
other wave phenomena, such as acoustics, where both
density and bulk modulus need to be modulated to
achieve a Willis stress-velocity coupling parameter in the
homogenisation regime [29], to be possible. Finally, we
suggest an electronic circuit model as a possible test bed
for these ideas.

Appendix A

The matrices in the eigenvalue equation, (7), are given
by:

MEE
n′n = MHH

n′n = −ngδnn′ , (A1)

MHE
n′n = −ε0

 (ω + nΩ)δnn′ − k2
yc

2
m

(
SEHn′n

)−1

+αe(ω + nΩ)(δn+1,n′ + δn−1,n′)
+αeΩ(δn+1,n′ − δn−1,n′)

 ,(A2)

MEH
n′n = −µ0

 (ω + nΩ)δnn′

+αm(ω + nΩ)(δn+1,n′ + δn−1,n′)
+αmΩ(δn+1,n′ − δn−1,n′)

 ,(A3)

with

SEHn′n =

 (ω + nΩ)δnn′

+αm(ω + nΩ)(δn+1,n′ + δn−1,n′)
+αmΩ(δn+1,n′ − δn−1,n′)

 . (A4)

Appendix B

The elements in the transmission line in Fig. 5 vary in
time as

Cn(t) = B1

[
1 + α1

(
e+i(Ωt+θn) + e−i(Ωt+θn)

)]−1

(B1)

Ln(t) = B2

[
1 + α2

(
e+i(Ωt+θn) + e−i(Ωt+θn)

)]−1

(B2)

Solving the equations,

V̇n = C−1
n (In − In+1) (B3)

İn+1 = L−1
n+1(Vn − Vn+1) (B4)

it can be proven that our transmission line model repro-
duces the Fresnel drag when both elements are modu-
lated.
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