514 research outputs found

    Metamaterial Applicator for Hyperthermia Cancer Treatment Procedure: Overview Study

    Get PDF
    This paper presents an overview of metamaterial slabs or lens as an integrated structure for applicators used in hyperthermia cancer treatment procedure. Hyperthermia treatment procedure (HTP) is a new technique that exposes a cancerous tissue by increasing tissue temperature until 41 °C to 45 °C at a certain period with electromagnetic radiation. Based on the previous study, by moving the microwave sources relative to the metamaterial (MTM) lenses from a tumor/cancer phantom alters the concentration of heating within biological tissue. In this paper, the overview of a metamaterial study on HTP from 2009 to 2019 was carried out. This study indicated that the left-handed metamaterial (LHM) lens was observed to be able to improve the focusing capabilities of HTP on the treated tissue. However, a further study is significantly required to provide different focus position distances on the treated tissue for different stages of cancer. Therefore, a modified HTP applicator integration with an MTM lens structure was proposed. It is aimed to improve focus position distance on the treated tissue and to reduce unwanted hot-spots on surrounding healthy tissues simultaneously. The proposed modified structure was presented in this paper. Specific absorption rate (SAR) simulation was carried out with SEMCAD X 14.8.4 to obtain a SAR distribution for determining penetration depth and focusing position distance on the treated tissu

    Delay Of Insulin Addition To Oral Combination Therapy Despite Inadequate Glycemic Control: Delay of Insulin Therapy

    Get PDF
    BACKGROUND: Patients and providers may be reluctant to escalate to insulin therapy despite inadequate glycemic control. OBJECTIVES: To determine the proportion of patients attaining and maintaining glycemic targets after initiating sulfonylurea and metformin oral combination therapy (SU/MET); to assess insulin initiation among patients failing SU/MET; and to estimate the glycemic burden incurred, stratified by whether HbA(1c) goal was attained and maintained. DESIGN: Longitudinal observational cohort study. SUBJECTS: Type 2 diabetes patients, 3,891, who newly initiated SU/MET between 1 January 1996 and 31 December 2000. MEASUREMENTS: Subjects were followed until insulin was added, health plan disenrolment, or until 31 December 2005. We calculated the number of months subjects continued SU/MET therapy alone, in total, and during periods of inadequate glycemic control; the A1C reached during those time periods; and total glycemic burden, defined as the estimated cumulative monthly difference between measured A1C and 8%. RESULTS: During a mean follow-up of 54.6 ± 28.6 months, 41.9% of the subjects added insulin, and 11.8% received maximal doses of both oral agents. Over half of SU/MET patients attained but failed to maintain A1C of 8%, yet continued SU/MET therapy for an average of nearly 3 years, sustaining glycemic burden equivalent to nearly 32 months of A1C levels of 9%. Another 18% of patients never attained the 8% goal with SU/MET, yet continued that therapy for an average of 30 months, reaching mean A1C levels of 10%. CONCLUSIONS: Despite inadequate glycemic control, a minority of patients added insulin or maximized oral agent doses, thus, incurring substantial glycemic burden on SU/MET. Additional studies are needed to examine the benefits of rapid titration to maximum doses and earlier initiation of insulin therapy

    Quantitative analysis of single bacterial chemotaxis using a linear concentration gradient microchannel

    Get PDF
    A microfluidic device to quantify bacterial chemotaxis has been proposed, which generates a linear concentration gradient of chemoattractant in the main channel only by convective and molecular diffusion, and which enables the bacteria to enter the main channel in a single file by hydrodynamic focusing technique. The trajectory of each bacterium in response to the concentration gradient of chemoattractant is photographed by a CCD camera and its velocity is acquired by a simple PTV (Particle Tracking Velocimetry) algorithm. An advantage of this assay is to measure the velocity of a single bacterium and to quantify the degree of chemotaxis by analyzing the frequency of velocities concurrently. Thus, the parameter characterizing the motility of wild-type Escherichia coli strain RP437 in response to various concentration gradients of L-aspartate is obtained in such a manner that the degree of bacterial chemotaxis is quantified on the basis of a newly proposed Migration Index

    Radio emission from Supernova Remnants

    Get PDF
    The explosion of a supernova releases almost instantaneously about 10^51 ergs of mechanic energy, changing irreversibly the physical and chemical properties of large regions in the galaxies. The stellar ejecta, the nebula resulting from the powerful shock waves, and sometimes a compact stellar remnant, constitute a supernova remnant (SNR). They can radiate their energy across the whole electromagnetic spectrum, but the great majority are radio sources. Almost 70 years after the first detection of radio emission coming from a SNR, great progress has been achieved in the comprehension of their physical characteristics and evolution. We review the present knowledge of different aspects of radio remnants, focusing on sources of the Milky Way and the Magellanic Clouds, where the SNRs can be spatially resolved. We present a brief overview of theoretical background, analyze morphology and polarization properties, and review and critical discuss different methods applied to determine the radio spectrum and distances. The consequences of the interaction between the SNR shocks and the surrounding medium are examined, including the question of whether SNRs can trigger the formation of new stars. Cases of multispectral comparison are presented. A section is devoted to reviewing recent results of radio SNRs in the Magellanic Clouds, with particular emphasis on the radio properties of SN 1987A, an ideal laboratory to investigate dynamical evolution of an SNR in near real time. The review concludes with a summary of issues on radio SNRs that deserve further study, and analyzing the prospects for future research with the latest generation radio telescopes.Comment: Revised version. 48 pages, 15 figure

    GFS, a preparation of Tasmanian Undaria pinnatifida is associated with healing and inhibition of reactivation of Herpes

    Get PDF
    BACKGROUND: We sought to assess whether GFS, a proprietary preparation of Tasmanian Undaria pinnatifida, has effects on healing or re-emergence of Herpetic infections, and additionally, to assess effects of GFS in vitro. Undaria is the most commonly eaten seaweed in Japan, and contains sulphated polyanions and other components with potential anti-viral activity. Herpes simplex virus type 1 (HSV-1) infections have lower reactivation rates and Herpes type 2 (HSV-2) infections have lower incidence in Japan than in the west. METHODS: Patients with active (15 subjects) or latent (6 subjects) Herpetic infections (HSV-1, 2, EBV, Zoster) were monitored for response to ingestion of GFS. GFS extract was tested in vitro for human T cell mitogenicity and anti-Herpes activity. RESULTS: Ingestion of GFS was associated with increased healing rates in patients with active infections. In addition, patients with latent infection remained asymptomatic whilst ingesting GFS. GFS extract inhibited Herpes viruses in vitro and was mitogenic to human T cells in vitro. CONCLUSIONS: Ingestion of GFS has inhibitory effects on reactivation and is associated with increased rate of healing after Herpetic outbreaks. GFS extract potently inhibited Herpes virus in vitro, and had mitogenic effects on human T cells

    Ca2+ Extrusion by NCX Is Compromised in Olfactory Sensory Neurons of OMP−/− Mice

    Get PDF
    The role of olfactory marker protein (OMP), a hallmark of mature olfactory sensory neurons (OSNs), has been poorly understood since its discovery. The electrophysiological and behavioral phenotypes of OMP knockout mice indicated that OMP influences olfactory signal transduction. However, the mechanism by which this occurs remained unknown.We used intact olfactory epithelium obtained from WT and OMP(-/-) mice to monitor the Ca(2+) dynamics induced by the activation of cyclic nucleotide-gated channels, voltage-operated Ca(2+) channels, or Ca(2+) stores in single dendritic knobs of OSNs. Our data suggested that OMP could act to modulate the Ca(2+)-homeostasis in these neurons by influencing the activity of the plasma membrane Na(+)/Ca(2+)-exchanger (NCX). Immunohistochemistry verifies colocalization of NCX1 and OMP in the cilia and knobs of OSNs. To test the role of NCX activity, we compared the kinetics of Ca(2+) elevation by stimulating the reverse mode of NCX in both WT and OMP(-/-) mice. The resulting Ca(2+) responses indicate that OMP facilitates NCX activity and allows rapid Ca(2+) extrusion from OSN knobs. To address the mechanism by which OMP influences NCX activity in OSNs we studied protein-peptide interactions in real-time using surface plasmon resonance technology. We demonstrate the direct interaction of the XIP regulatory-peptide of NCX with calmodulin (CaM).Since CaM also binds to the Bex protein, an interacting protein partner of OMP, these observations strongly suggest that OMP can influence CaM efficacy and thus alters NCX activity by a series of protein-protein interactions

    Successful Shortening of Tuberculosis Treatment Using Adjuvant Host-Directed Therapy with FDA-Approved Phosphodiesterase Inhibitors in the Mouse Model

    Get PDF
    Global control of tuberculosis (TB), an infectious disease that claims nearly 2 million lives annually, is hindered by the long duration of chemotherapy required for curative treatment. Lack of adherence to this intense treatment regimen leads to poor patient outcomes, development of new or additional drug resistance, and continued spread of M.tb. within communities. Hence, shortening the duration of TB therapy could increase drug adherence and cure in TB patients. Here, we report that addition of the United Stated Food and Drug Administration-approved phosphodiesterase inhibitors (PDE-Is) cilostazol and sildenafil to the standard TB treatment regimen reduces tissue pathology, leads to faster bacterial clearance and shortens the time to lung sterilization by one month, compared to standard treatment alone, in a murine model of TB. Our data suggest that these PDE-Is could be repurposed for use as adjunctive drugs to shorten TB treatment in humans

    Phosphodiesterase-4 Inhibition Alters Gene Expression and Improves Isoniazid – Mediated Clearance of Mycobacterium tuberculosis in Rabbit Lungs

    Get PDF
    Tuberculosis (TB) treatment is hampered by the long duration of antibiotic therapy required to achieve cure. This indolent response has been partly attributed to the ability of subpopulations of less metabolically active Mycobacterium tuberculosis (Mtb) to withstand killing by current anti-TB drugs. We have used immune modulation with a phosphodiesterase-4 (PDE4) inhibitor, CC-3052, that reduces tumor necrosis factor alpha (TNF-α) production by increasing intracellular cAMP in macrophages, to examine the crosstalk between host and pathogen in rabbits with pulmonary TB during treatment with isoniazid (INH). Based on DNA microarray, changes in host gene expression during CC-3052 treatment of Mtb infected rabbits support a link between PDE4 inhibition and specific down-regulation of the innate immune response. The overall pattern of host gene expression in the lungs of infected rabbits treated with CC-3052, compared to untreated rabbits, was similar to that described in vitro in resting Mtb infected macrophages, suggesting suboptimal macrophage activation. These alterations in host immunity were associated with corresponding down-regulation of a number of Mtb genes that have been associated with a metabolic shift towards dormancy. Moreover, treatment with CC-3052 and INH resulted in reduced expression of those genes associated with the bacterial response to INH. Importantly, CC-3052 treatment of infected rabbits was associated with reduced ability of Mtb to withstand INH killing, shown by improved bacillary clearance, from the lungs of co-treated animals compared to rabbits treated with INH alone. The results of our study suggest that changes in Mtb gene expression, in response to changes in the host immune response, can alter the responsiveness of the bacteria to antimicrobial agents. These findings provide a basis for exploring the potential use of adjunctive immune modulation with PDE4 inhibitors to enhance the efficacy of existing anti-TB treatment

    Role of N-acetylcysteine in the management of COPD

    Get PDF
    The importance of the underlying local and systemic oxidative stress and inflammation in chronic obstructive pulmonary disease (COPD) has long been established. In view of the lack of therapy that might inhibit the progress of the disease, there is an urgent need for a successful therapeutic approach that, through affecting the pathological processes, will influence the subsequent issues in COPD management such as lung function, airway clearance, dyspnoea, exacerbation, and quality of life. N-acetylcysteine (NAC) is a mucolytic and antioxidant drug that may also influence several inflammatory pathways. It provides the sulfhydryl groups and acts both as a precursor of reduced glutathione and as a direct reactive oxygen species (ROS) scavenger, hence regulating the redox status in the cells. The changed redox status may, in turn, influence the inflammation-controlling pathways. Moreover, as a mucolytic drug, it may, by means of decreasing viscosity of the sputum, clean the bronchi leading to a decrease in dyspnoea and improved lung function. Nevertheless, as successful as it is in the in vitro studies and in vivo studies with high dosage, its actions at the dosages used in COPD management are debatable. It seems to influence exacerbation rate and limit the number of hospitalization days, however, with little or no influence on the lung function parameters. Despite these considerations and in view of the present lack of effective therapies to inhibit disease progression in COPD, NAC and its derivatives with their multiple molecular modes of action remain promising medication once doses and route of administration are optimized
    corecore